Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran
Abstract
:1. Introduction
2. Study Area and Spatial Dataset
2.1. Landslide Inventory Map
2.2. Influential Factors on Landslide
3. Materials and Methods
3.1. Variance Inflation Factor (VIF)
3.2. Boruta–XGBoost Feature Selection Method
3.3. Base Models
3.3.1. Adaptive Fuzzy Inference System (ANFIS)
3.3.2. Support Vector Regression (SVR)
3.3.3. Extreme Learning Machine (ELM)
3.4. Meta-Heuristic Algorithms
3.4.1. Ladybug Beetle Optimizer (LBO)
3.4.2. Electric Eel Foraging Optimizer (EEFO)
3.5. Non-Landslide Sampling
3.6. Proposed Methodology
3.6.1. Feature Encoding and Normalization
3.6.2. Feature Selection
3.6.3. Model Framework
Algorithm 1. Steps to perform the proposed method. | |||
1. Initial population % real encoding for hyper-parameter optimization | |||
2. for 1 to 1000 do | |||
3. execution of meta-heuristic (LBO, EEFO) operators | |||
4. for 1 to 10 (10-fold cv) do | |||
5. model training using (k − 1) fold | |||
6. model validation using 1-fold (compute RMSE) | |||
7. save RMSE | |||
8. end | |||
9. mean of RMSE on each fold as fitness function | |||
10. update best solution | |||
11. end (end of meta-heuristic algorithms) | |||
12. return the best solution (with optimum hyper-parameters) |
3.6.4. Ensemble Learning Techniques
Algorithm 2. Steps to perform the stacking ensemble technique. | |||||||
1.Input | |||||||
% training dataset | |||||||
% optimal ANFIS, optimal SVR, optimal ELM, | |||||||
% LBO, EEFO | |||||||
2. | % generate empty dataset | ||||||
3. for i = 1:n do | |||||||
4. for b = 1:B do | |||||||
5. | |||||||
6. end (end of optimal models’ outputs) | |||||||
8. end | |||||||
% learning algorithm for obtaining the optimal combination weight | |||||||
10. Output | |||||||
% is the weight combination of three base models |
3.6.5. Validation
4. Results and Implementation
4.1. Create Non-Landslide Points
4.2. Results of Feature Selection
4.3. Optimizing Base Models
4.4. LSM Preparation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panahi, M.; Gayen, A.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial Prediction of Landslide Susceptibility Using Hybrid Support Vector Regression (SVR) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) with Various Metaheuristic Algorithms. Sci. Total Environ. 2020, 741, 139937. [Google Scholar] [CrossRef] [PubMed]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Zhou, Y.; Daud, H. Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data. Remote Sens. 2023, 15, 4703. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Park, S.; Lee, C.-W.; Lee, S. Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, Logitboost, and Naïvebayes Machine-Learning Algorithms. Sustainability 2018, 10, 3697. [Google Scholar] [CrossRef]
- Ahmad, H.; Alam, M.; Yinghua, Z.; Najeh, T.; Gamil, Y.; Hameed, S. Landslide Risk Assessment Integrating Susceptibility, Hazard, and Vulnerability Analysis in Northern Pakistan. Discov. Appl. Sci. 2024, 6, 7. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Kalantar, B.; Abdullahi Mu’azu, M.; A. Rashid, A.S.; Foong, L.K.; Nguyen, H. Novel Hybrids of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Several Metaheuristic Algorithms for Spatial Susceptibility Assessment of Seismic-Induced Landslide. Geomat. Nat. Hazards Risk 2019, 10, 1879–1911. [Google Scholar] [CrossRef]
- Kumar, C.; Walton, G.; Santi, P.; Luza, C. An Ensemble Approach of Feature Selection and Machine Learning Models for Regional Landslide Susceptibility Mapping in the Arid Mountainous Terrain of Southern Peru. Remote Sens. 2023, 15, 1376. [Google Scholar] [CrossRef]
- Achu, A.; Aju, C.; Di Napoli, M.; Prakash, P.; Gopinath, G.; Shaji, E.; Chandra, V. Machine-Learning Based Landslide Susceptibility Modelling with Emphasis on Uncertainty Analysis. Geosci. Front. 2023, 14, 101657. [Google Scholar] [CrossRef]
- Chang, Z.; Huang, F.; Huang, J.; Jiang, S.-H.; Liu, Y.; Meena, S.R.; Catani, F. An Updating of Landslide Susceptibility Prediction from the Perspective of Space and Time. Geosci. Front. 2023, 14, 101619. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine Learning Techniques in Landslide Susceptibility Mapping: A Survey and a Case Study. In Landslides: Theory, Practice and Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–301. [Google Scholar]
- Fallah-Zazuli, M.; Vafaeinejad, A.; Alesheykh, A.A.; Modiri, M.; Aghamohammadi, H. Mapping Landslide Susceptibility in the Zagros Mountains, Iran: A Comparative Study of Different Data Mining Models. Earth Sci. Inform. 2019, 12, 615–628. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Badola, S.; Parkash, S. Landslide Susceptibility Mapping Using Machine Learning in Himalayan Region: A Review. In Geo-Information for Disaster Monitoring and Management; Springer: Berlin/Heidelberg, Germany, 2024; pp. 123–143. [Google Scholar]
- He, Y.; Huo, T.; Gao, B.; Zhu, Q.; Jin, L.; Chen, J.; Zhang, Q.; Tang, J. Thaw Slump Susceptibility Mapping Based on Sample Optimization and Ensemble Learning Techniques in Qinghai-Tibet Railway Corridor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5443–5459. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Asl, D.T.; et al. Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Pradhan, B. Enhancing Landslide Susceptibility Mapping Incorporating Landslide Typology via Stacking Ensemble Machine Learning in Three Gorges Reservoir, China. Geosci. Front. 2024, 15, 101802. [Google Scholar] [CrossRef]
- Mohanty, B.; Sarkar, R.; Saha, S. Preparing Coastal Erosion Vulnerability Index Applying Deep Learning Techniques in Odisha State of India. Int. J. Disaster Risk Reduct. 2023, 96, 103986. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, S.-J. Landslide Susceptibility Assessment of South Korea Using Stacking Ensemble Machine Learning. Geoenviron. Disasters 2024, 11, 7. [Google Scholar] [CrossRef]
- Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thi Ngo, P.T. Decision Tree Based Ensemble Machine Learning Approaches for Landslide Susceptibility Mapping. Geocarto Int. 2022, 37, 4594–4627. [Google Scholar] [CrossRef]
- Jafari, A.; Delavar, M.R.; Stein, A. Stacking-Based Uncertainty Modelling of Statistical and Machine Learning Methods for Residential Property Valuation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 4, 49–55. [Google Scholar] [CrossRef]
- Liu, B.; Guo, H.; Li, J.; Ke, X.; He, X. Application and Interpretability of Ensemble Learning for Landslide Susceptibility Mapping along the Three Gorges Reservoir Area, China. Nat. Hazards 2024, 120, 4601–4632. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Han, Z.; Li, J.; Wang, W.; Chen, N.; Hu, G.; Huang, J. An Ensemble Deep-Learning Framework for Landslide Susceptibility Assessment Using Multiple Blocks: A Case Study of Wenchuan Area, China. Geomat. Nat. Hazards Risk 2023, 14, 2221771. [Google Scholar] [CrossRef]
- Le Minh, N.; Truyen, P.T.; Van Phong, T.; Jaafari, A.; Amiri, M.; Van Duong, N.; Van Bien, N.; Duc, D.M.; Prakash, I.; Pham, B.T. Ensemble Models Based on Radial Basis Function Network for Landslide Susceptibility Mapping. Environ. Sci. Pollut. Res. 2023, 30, 99380–99398. [Google Scholar] [CrossRef]
- Matougui, Z.; Djerbal, L.; Bahar, R. A Comparative Study of Heterogeneous and Homogeneous Ensemble Approaches for Landslide Susceptibility Assessment in the Djebahia Region, Algeria. Environ. Sci. Pollut. Res. 2024, 31, 40554–40580. [Google Scholar] [CrossRef] [PubMed]
- Hong, H. Assessing Landslide Susceptibility Based on Hybrid Best-First Decision Tree with Ensemble Learning Model. Ecol. Indic. 2023, 147, 109968. [Google Scholar] [CrossRef]
- Tien Bui, D.; Ho, T.-C.; Pradhan, B.; Pham, B.-T.; Nhu, V.-H.; Revhaug, I. GIS-Based Modeling of Rainfall-Induced Landslides Using Data Mining-Based Functional Trees Classifier with AdaBoost, Bagging, and MultiBoost Ensemble Frameworks. Environ. Earth Sci. 2016, 75, 1–22. [Google Scholar] [CrossRef]
- Zhao, F.; Miao, F.; Wu, Y.; Ke, C.; Gong, S.; Ding, Y. Refined Landslide Susceptibility Mapping in Township Area Using Ensemble Machine Learning Method under Dataset Replenishment Strategy. Gondwana Res. 2024, 131, 20–37. [Google Scholar] [CrossRef]
- Lu, J.; He, Y.; Zhang, L.; Zhang, Q.; Gao, B.; Chen, H.; Fang, Y. Ensemble Learning Landslide Susceptibility Assessment with Optimized Non-Landslide Samples Selection. Geomat. Nat. Hazards Risk 2024, 15, 2378176. [Google Scholar] [CrossRef]
- Ghayur Sadigh, A.; Alesheikh, A.A.; Bateni, S.M.; Jun, C.; Lee, S.; Nielson, J.R.; Panahi, M.; Rezaie, F. Comparison of Optimized Data-Driven Models for Landslide Susceptibility Mapping. Environ. Dev. Sustain. 2024, 26, 14665–14692. [Google Scholar] [CrossRef]
- Arian, M.; Aram, Z. Relative Tectonic Activity Classification in the Kermanshah Area, Western Iran. Solid Earth 2014, 5, 1277–1291. [Google Scholar] [CrossRef]
- Forestry and Watershed Organization. Available online: https://frw.ir (accessed on 1 September 2024).
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Selecting Optimal Conditioning Factors in Shallow Translational Landslide Susceptibility Mapping Using Genetic Algorithm. Eng. Geol. 2015, 192, 101–112. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.-X. Modeling Landslide Susceptibility Using LogitBoost Alternating Decision Trees and Forest by Penalizing Attributes with the Bagging Ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Pham, Q.B.; Ekmekcioğlu, Ö.; Ali, S.A.; Koc, K.; Parvin, F. Examining the Role of Class Imbalance Handling Strategies in Predicting Earthquake-Induced Landslide-Prone Regions. Appl. Soft Comput. 2023, 143, 110429. [Google Scholar] [CrossRef]
- Sharma, N.; Saharia, M.; Ramana, G. High Resolution Landslide Susceptibility Mapping Using Ensemble Machine Learning and Geospatial Big Data. Catena 2024, 235, 107653. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geosci. Front. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A.; Hosseinali, F. A GIS-Based Neuro-Fuzzy Procedure for Integrating Knowledge and Data in Landslide Susceptibility Mapping. Comput. Geosci. 2010, 36, 1101–1114. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Heidari, A.A.; Akhoondzadeh, M.; Chen, H. A Wavelet PM2. 5 Prediction System Using Optimized Kernel Extreme Learning with Boruta-XGBoost Feature Selection. Mathematics 2022, 10, 3566. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, F.; Xia, Z.; Zhuang, L.; Jiao, K.; Peng, Z.; Wang, B.; Bucknall, R.; Yearwood, K.; Hou, Z. A Novel Feature Susceptibility Approach for a PEMFC Control System Based on an Improved XGBoost-Boruta Algorithm. Energy AI 2023, 12, 100229. [Google Scholar] [CrossRef]
- Jang, J.-S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Alesheikh, A.A.; Chatrsimab, Z.; Rezaie, F.; Lee, S.; Jafari, A.; Panahi, M. Land Subsidence Susceptibility Mapping Based on InSAR and a Hybrid Machine Learning Approach. Egypt. J. Remote Sens. Space Sci. 2024, 27, 255–267. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. In Machine Learning; AT&T Bell Labs.: Hohndel, NJ, USA, 1995. [Google Scholar]
- Shikhteymour, S.R.; Borji, M.; Bagheri-Gavkosh, M.; Azimi, E.; Collins, T.W. A Novel Approach for Assessing Flood Risk with Machine Learning and Multi-Criteria Decision-Making Methods. Appl. Geogr. 2023, 158, 103035. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1996; Volume 9. [Google Scholar]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Kisi, O.; Yaseen, Z.M.; Shahid, S.; Zounemat-Kermani, M. Improving Streamflow Prediction Using a New Hybrid ELM Model Combined with Hybrid Particle Swarm Optimization and Grey Wolf Optimization. Knowledge-Based Syst. 2021, 230, 107379. [Google Scholar] [CrossRef]
- Safiri, S.; Nikoofard, A. Ladybug Beetle Optimization Algorithm: Application for Real-World Problems. J. Supercomput. 2023, 79, 3511–3560. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z.; Fan, H.; Zhang, J.; Mirjalili, S.; Khodadadi, N.; Cao, Q. Electric Eel Foraging Optimization: A New Bio-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2024, 238, 122200. [Google Scholar] [CrossRef]
- Mehta, P.; Yildiz, B.S.; Sait, S.M.; Yıldız, A.R. Optimization of Electric Vehicle Design Problems Using Improved Electric Eel Foraging Optimization Algorithm. Mater. Test. 2024, 66, 1230–1240. [Google Scholar] [CrossRef]
- Razavi Termeh, V. Modeling Asthma Prone Areas Using Machine Learning with Emphasis on Data Management (in Persian). Ph.D. Thesis, K.N. Toosi University of Technology: Tehran, Iran, 2021. [Google Scholar]
- Junninen, H.; Niska, H.; Tuppurainen, K.; Ruuskanen, J.; Kolehmainen, M. Methods for Imputation of Missing Values in Air Quality Data Sets. Atmos. Environ. 2004, 38, 2895–2907. [Google Scholar] [CrossRef]
- Zandi, I.; Pahlavani, P.; Bigdeli, B. Preparation of Flood Susceptibility Map Using Multi-Criteria Spatial Analysis and Data Fusion (A Case Study: Maneh and Samalqan County). J. Geomat. Sci. Technol. 2023, 12, 53–76. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood Susceptibility Assessment Using Integration of Adaptive Network-Based Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO) and BAT Algorithms (BA). Geocarto Int. 2019, 34, 1252–1272. [Google Scholar] [CrossRef]
- Jafari, A.; Alesheikh, A.A.; Rezaie, F.; Panahi, M.; Shahsavar, S.; Lee, M.-J.; Lee, S. Enhancing a Convolutional Neural Network Model for Land Subsidence Susceptibility Mapping Using Hybrid Meta-Heuristic Algorithms. Int. J. Coal Geol. 2023, 277, 104350. [Google Scholar] [CrossRef]
- Huan, Y.; Song, L.; Khan, U.; Zhang, B. Stacking Ensemble of Machine Learning Methods for Landslide Susceptibility Mapping in Zhangjiajie City, Hunan Province, China. Environ. Earth Sci. 2023, 82, 35. [Google Scholar] [CrossRef]
- Li, W.; Fang, Z.; Wang, Y. Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area, China. Stoch. Environ. Res. Risk Assess. 2021, 8, 2207–2228. [Google Scholar] [CrossRef]
- Benbouras, M.A. Hybrid Meta-Heuristic Machine Learning Methods Applied to Landslide Susceptibility Mapping in the Sahel-Algiers. Int. J. Sediment Res. 2022, 37, 601–618. [Google Scholar] [CrossRef]
Class | Factor | Source | Resolution/Scale |
---|---|---|---|
Topographical | Elevation | Iran National Cartographic Center | 85 m |
Slope | DEM Derived | ||
Aspect | |||
Valley Depth | |||
Profile Curvature | |||
Plan Curvature | |||
Geological | Lithology | Geological Survey and Mineral Exploration of Iran | 1:100,000 |
Soil Type | |||
Soil Texture | |||
Distance to Faults | |||
Environmental | Land Use | ||
Distance to Roads | |||
Hydrological | Stream Power Index | DEM Derived | 85 m |
Topographic Wetness Indices | |||
Distance to Drainage | Geological Survey and Mineral Exploration of Iran | 1:100,000 | |
Drainage Density | |||
Rainfall | Iran Meteorological Organization |
Factor | VIF | Factor | VIF |
---|---|---|---|
Plan curvature | 1.3324 | Soil type | 1.1754 |
Land use | 1.3372 | Drainage density | 1.3431 |
Distance to roads | 1.5710 | Slope | 1.0667 |
SPI | 1.2547 | Elevation | 1.6425 |
Distance to faults | 1.1807 | Lithology | 1.1932 |
Soil texture | 1.3293 | Rainfall | 1.4603 |
Distance to drainage | 1.0845 |
Hybrid Models | AUC | RMSE | R | R-Squared | ||||
---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | |
ANFIS–EEFO | 0.9721 | 0.9437 * | 0.3174 | 0.3520 * | 0.8351 | 0.7674 * | 0.5970 | 0.5042 * |
ANFIS–LBO | 0.9799 | 0.9394 | 0.2986 | 0.3694 | 0.8624 | 0.7415 | 0.6432 | 0.4537 |
ANFIS | 0.9117 | 0.9156 | 0.3586 | 0.3608 | 0.6970 | 0.6940 | 0.4857 | 0.4790 |
SVR–EEFO | 0.9754 | 0.9221 | 0.2556 | 0.3421 | 0.8791 | 0.7429 | 0.7387 | 0.5316 |
SVR–LBO | 0.9795 | 0.9416 * | 0.2522 | 0.3173 * | 0.8882 | 0.7846 * | 0.7456 | 0.5970 * |
SVR | 1.0000 | 0.8983 | 0.0736 | 0.4089 | 0.9999 | 0.6086 | 0.9783 | 0.3310 |
ELM–EEFO | 0.9733 | 0.8593 | 0.3275 | 0.4036 | 0.8233 | 0.6371 | 0.5711 | 0.3482 |
ELM–LBO | 0.9684 | 0.8853 * | 0.3484 | 0.3889 * | 0.7973 | 0.6552 * | 0.5145 | 0.3947 * |
ELM | 0.8935 | 0.8896 | 0.3980 | 0.4019 | 0.6600 | 0.6416 | 0.3664 | 0.3536 |
Stacking–EEFO | 0.9820 | 0.9479 | 0.2443 | 0.3149 | 0.8952 | 0.7991 | 0.7613 | 0.6038 |
Stacking–LBO | 0.9820 | 0.9481 * | 0.2442 | 0.3146 * | 0.8950 | 0.7994 * | 0.7614 | 0.6039 * |
Ensemble Technique | ANFIS–EEFO | SVR–LBO | ELM–LBO |
---|---|---|---|
Stacking–EEFO | 0.3275 | 0.5011 | 0.4689 |
Stacking–LBO | 0.4932 | 0.8246 | 0.6363 |
Very Low | Low | Moderate | High | Very High | |
---|---|---|---|---|---|
ANFIS–EEFO | 1 | 1 | 13 | 38 | 63 |
SVR–LBO | 1 | 2 | 4 | 27 | 82 |
ELM–LBO | 1 | 2 | 8 | 21 | 84 |
Stacking–EEFO | 1 | 2 | 3 | 22 | 88 |
Stacking–LBO | 1 | 1 | 4 | 19 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, Z.; Alesheikh, A.A.; Jafari, A.; Torktatari, S.; Sharif, M. Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran. Information 2024, 15, 689. https://doi.org/10.3390/info15110689
Yousefi Z, Alesheikh AA, Jafari A, Torktatari S, Sharif M. Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran. Information. 2024; 15(11):689. https://doi.org/10.3390/info15110689
Chicago/Turabian StyleYousefi, Zeynab, Ali Asghar Alesheikh, Ali Jafari, Sara Torktatari, and Mohammad Sharif. 2024. "Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran" Information 15, no. 11: 689. https://doi.org/10.3390/info15110689
APA StyleYousefi, Z., Alesheikh, A. A., Jafari, A., Torktatari, S., & Sharif, M. (2024). Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran. Information, 15(11), 689. https://doi.org/10.3390/info15110689