Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications
Abstract
:1. Introduction
2. Materials and Methods
Bibliometrics and Network Analysis
3. Results
3.1. Annual Research Production
3.2. Research Areas
3.3. Countries and Institutions
3.4. Keywords
3.5. Top 10 Publications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Dobrev, D. A definition of artificial intelligence. arXiv 2012, arXiv:1210.1568. [Google Scholar]
- Hasson, U.; Nastase, S.A.; Goldstein, A. Direct fit to nature: An evolutionary perspective on biological and artificial neural networks. Neuron 2020, 105, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A. What are artificial neural networks? Nat. Biotechnol. 2008, 26, 195–197. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Smith, R.G.; Eckroth, J. Building AI applications: Yesterday, today, and tomorrow. AI Mag. 2017, 38, 6–22. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M. The graph neural network model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar] [CrossRef]
- Waikhom, L.; Patgiri, R. Graph neural networks: Methods, applications, and opportunities. arXiv 2021. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Xiao, Y.; Song, R. A review on graph neural network methods in financial applications. J. Data Sci. 2022, 20, 111–134. [Google Scholar] [CrossRef]
- Zheng, Q.; Ding, Q. Exploration of consumer preference based on deep learning neural network model in the immersive marketing environment. PLoS ONE 2022, 17, e0268007. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.A.; Ferreira, N.C.d.S.; Maricato, V.; Alberto, A.V.P.; Dias, E.A.; Jose Aguiar Coelho, N. Graph neural networks as a potential tool in improving virtual screening programs. Front. Chem. 2022, 9, 787194. [Google Scholar] [CrossRef] [PubMed]
- Atz, K.; Grisoni, F.; Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 2021, 3, 1023–1032. [Google Scholar] [CrossRef]
- You, R.; Yao, S.; Mamitsuka, H.; Zhu, S. DeepGraphGO: Graph neural network for large-scale, multispecies protein function prediction. Bioinformatics 2021, 37, i262–i271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, L.; Zhong, F.; Wang, D.; Jiang, J.; Zhang, S.; Jiang, H.; Zheng, M.; Li, X. Graph neural network approaches for drug-target interactions. Curr. Opin. Struct. Biol. 2022, 73, 102327. [Google Scholar] [CrossRef]
- Li, Y.; Qian, B.; Zhang, X.; Liu, H. Graph neural network-based diagnosis prediction. Big Data 2020, 8, 379–390. [Google Scholar] [CrossRef]
- Choi, K.S.; Kim, S.; Kim, B.-H.; Jeon, H.J.; Kim, J.-H.; Jang, J.H.; Jeong, B. Deep graph neural network-based prediction of acute suicidal ideation in young adults. Sci. Rep. 2021, 11, 15828. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, Z.; Zhang, Q.; Zhang, G.; Hua, Q.; Li, Q. Deep data analysis-based agricultural products management for smart public healthcare. Front. Public Health 2022, 10, 847252. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Cascajares, M.; Alcayde, A.; Salmerón-Manzano, E.; Manzano-Agugliaro, F. The bibliometric literature on Scopus and WoS: The Medicine and Environmental Sciences categories as case of study. Int. J. Environ. Res. Public Health 2021, 18, 5851. [Google Scholar] [CrossRef]
- Gaviria-Marin, M.; Merigó, J.M.; Baier-Fuentes, H. Knowledge management: A global examination based on bibliometric analysis. Technol. Forecast. Soc. Chang. 2019, 140, 194–220. [Google Scholar] [CrossRef]
- Munnolli, S.S.; Pujar, S.M. Scientometric study of Indian cancer research based on Scopus database. COLLNET J. Scientometr. Inf. Manag. 2017, 11, 201–214. [Google Scholar] [CrossRef]
- Thompson, D.F.; Walker, C.K. A descriptive and historical review of bibliometrics with applications to Medical Sciences. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Ninkov, A.; Frank, J.R.; Maggio, L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2021, 11, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Dong, S.; Buckingham, L. How does a research topic evolve into a research field?—A bibliometric analysis of metadiscourse research. Ibérica 2023, 45, 163–189. [Google Scholar] [CrossRef]
- Wider, W.; Mutang, J.A.; Chua, B.S.; Pang, N.T.P.; Jiang, L.; Fauzi, M.A.; Udang, L.N. Mapping the evolution of neurofeedback research: A bibliometric analysis of trends and future directions. Front. Hum. Neurosci. 2024, 18, 1339444. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Maciel Braga, L.A.; Mota, F.B. Early cancer diagnosis using lab-on-a-chip devices: A bibliometric and network analysis. COLLNET J. Scientometr. Inf. Manag. 2021, 15, 163–196. [Google Scholar] [CrossRef]
- Lopes, R.M.; Braga, L.A.M.; Serrão, A.S.R.; Teixeira, L.D.A.; Comarú, M.W.; de Souza, R.A.; de Souza, C.A.M.; Mota, F.B. Virtual reality to teach students in laboratories: A bibliometric and network analysis. J. Chem. Educ. 2024, 101, 501–513. [Google Scholar] [CrossRef]
- Keramatfar, A.; Rafiee, M.; Amirkhani, H. Graph neural networks: A bibliometrics overview. Mach. Learn. Appl. 2022, 10, 100401. [Google Scholar] [CrossRef]
- Eschmann, R.; Groshek, J.; Li, S.; Toraif, N.; Thompson, J.G. Bigger than sports: Identity politics, Colin Kaepernick, and concession making in #BoycottNike. Comput. Human. Behav. 2021, 114, 106583. [Google Scholar] [CrossRef]
- Martin, S.; Brown, W.M.; Klavans, R.; Boyack, K.W. OpenOrd: An open-source toolbox for large graph layout. In Visualization and Data Analysis 2011; International Society for Optical Engineering (SPIE): Bellingham, WA, USA, 2011; p. 786806. [Google Scholar] [CrossRef]
- Schneider, L.; Guo, Y.; Birch, D.; Sarkies, P. Network-based visualisation reveals new insights into transposable element diversity. Mol. Syst. Biol. 2021, 17, e9600. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Carron-Arthur, B.; Reynolds, J.; Bennett, K.; Bennett, A.; Cunningham, J.A.; Griffiths, K.M. Community structure of a mental health internet support group: Modularity in user thread participation. JMIR Ment. Health 2016, 3, e20. [Google Scholar] [CrossRef]
- Xia, L.; Chen, B.; Hunt, K.; Zhuang, J.; Song, C. Food safety awareness and opinions in China: A social network analysis approach. Foods 2022, 11, 2909. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks, 2nd ed.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; van den Oord, A. Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Res. Policy 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Cartwright, D.; Harary, F. Structural balance: A generalization of Heider’s theory. Psychol. Rev. 1956, 63, 277–293. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data MINING, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016; Available online: https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf (accessed on 26 September 2024).
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 27–29 October 2017; pp. 764–773. Available online: https://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf (accessed on 26 September 2024).
- Huang, J.; Shen, H.; Hou, L.; Cheng, X. SDGNN: Learning node representation for signed directed networks. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 196–203. [Google Scholar] [CrossRef]
- Mahdavi, I.; Kaushal, O.P.; Chandra, M. Graph-neural network approach in cellular manufacturing on the basis of a binary system. Int. J. Prod. Res. 2001, 39, 2913–2922. [Google Scholar] [CrossRef]
- Scarselli, F.; Tsoi, A.C.; Gori, M.; Hagenbuchner, M. Graphical-based learning environments for pattern recognition. In Structural, Syntactic, and Statistical Pattern Recognition. SSPR/SPR 2004. Lecture Notes in Computer Science; Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3138, pp. 42–56. [Google Scholar] [CrossRef]
- Chen, H.; Deng, Z. Bibliometric analysis of the application of convolutional neural network in computer vision. IEEE Access 2020, 8, 155417–155428. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Khan, W.; Serhani, M.A.; Al Jassmi, H. Bibliometric analysis and review of deep learning-based crack detection literature published between 2010 and 2022. Buildings 2022, 12, 432. [Google Scholar] [CrossRef]
- Xu, D.; Liu, B.; Wang, J.; Zhang, Z. Bibliometric analysis of artificial intelligence for biotechnology and applied microbiology: Exploring research hotspots and frontiers. Front. Bioeng. Biotechnol. 2022, 10, 998298. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Nikolentzos, G.; Vazirgiannis, M. Transfer Graph neural networks for pandemic forecasting. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual , 2–9 February; 2021; pp. 4838–4845. [Google Scholar] [CrossRef]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Swayamsiddha, S.; Prashant, K.; Shaw, D.; Mohanty, C. The prospective of artificial intelligence in COVID-19 pandemic. Health Technol. 2021, 11, 1311–1320. [Google Scholar] [CrossRef]
- Syrowatka, A.; Kuznetsova, M.; Alsubai, A.; Beckman, A.L.; Bain, P.A.; Craig, K.J.T.; Hu, J.; Jackson, G.P.; Rhee, K.; Bates, D.W. Leveraging artificial intelligence for pandemic preparedness and response: A scoping review to identify key use cases. NPJ Digit. Med. 2021, 4, 96. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Nerurkar, P.A.; Chandane, M.; Bhirud, S. Exploring convolutional auto-encoders for representation learning on networks. Comput. Sci. 2019, 20, 273–288. [Google Scholar] [CrossRef]
- Giraldo, J.H.; Skianis, K.; Bouwmans, T.; Malliaros, F.D. On the trade-off between over-smoothing and over-squashing in deep graph neural networks. In CIKM’23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; ACM: New York, NY, USA,; pp. 566–576. [CrossRef]
- Wu, X.-G.; Wu, H.-J.; Zhou, X.; Zhao, X.; Lu, K. Towards defense against adversarial attacks on graph neural networks via calibrated co-training. J. Comput. Sci. Technol. 2022, 37, 1161–1175. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Rezaee, K.; Khosravi, M.R.; Khala, O.I.; Khan, A.A.; Ramesh, D.; Qi, L. Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in travelling enterprises. IEEE Trans. Ind. Inform. 2023, 19, 635–643. [Google Scholar] [CrossRef]
- Ma, P.; Gao, Q. EEG signal and feature interaction modeling-based eye behavior prediction research. Comput. Math. Methods Med. 2020, 2020, 2801015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, P.; Zuo, M.; Li, Y.; Xu, Z. Automatic assembly simulation of product in virtual environment based on interaction feature pair. J. Intell. Manuf. 2018, 29, 1235–1256. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, X.; Huang, N. Integrating neighborhood geographic distribution and social structure influence for social media user geolocation. CMES-Comput. Model. Eng. Sci. 2024, 140, 2513–2532. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.Z.; Guo, X.; Kek, H.Y.; Ku, T.; Goh, S.H.; Leung, C.F.; Tan, E.; Zhang, Y. Three-dimensional reconstruction of subsurface stratigraphy using machine learning with neighborhood aggregation. Eng. Geol. 2024, 337, 107588. [Google Scholar] [CrossRef]
- Ji, S.; Li, J.; Yuan, Q.; Lu, J. Multi-range gated graph neural network for telecommunication fraud detection. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, X.; Chen, H.; Liu, S.; Jiang, H.; Chu, G.; Li, R. BTG: A bridge to graph machine learning in telecommunications fraud detection. Future Gener. Comput. Syst. 2022, 137, 274–287. [Google Scholar] [CrossRef]
- Huang, Z.; Du, Y.; Yang, S.; Xiao, H.; Wang, D.; Sun, T. Joint optimization of task scheduling and computing resource allocation for VR video services in 5G-advanced networks. Trans. Emerg. Telecommun. Technol. 2024, 35, e4909. [Google Scholar] [CrossRef]
- Bouchemoukha, H.; Zennir, M.N.; Alioua, A. A spatial-temporal graph gated transformer for traffic forecasting. Trans. Emerg. Telecommun. Technol. 2024, 35, e5021. [Google Scholar] [CrossRef]
- Yu, H.; Liu, S.; Ren, Y.; Zhao, Y.; Jiang, H.; Liu, R. Reducing hysteresis and over-smoothing in traffic estimation: A multistream spatial-temporal graph convolutional network. Trans. Emerg. Telecommun. Technol. 2023, 34, e4789. [Google Scholar] [CrossRef]
- Taub, R.; Wasserman, T.; Savir, Y. Symbiotic message passing model for transfer learning between anti-fungal and anti-bacterial domains. In Proceedings of the 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Eindhoven, The Netherlands, 29–31 August 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Westarb, G.; Stefenon, S.F.; Hoppe, A.F.; Sartori, A.; Klaar, A.C.R.; Leithardt, V.R.Q. Complex graph neural networks for medication interaction verification. J. Intell. Fuzzy Syst. 2023, 44, 10383–10395. [Google Scholar] [CrossRef]
- Langenecker, S.A.; Westlund Schreiner, M.; Thomas, L.R.; Bessette, K.L.; DelDonno, S.R.; Jenkins, L.M.; Easter, R.E.; Stange, J.P.; Pocius, S.L.; Dillahunt, A.; et al. Using network parcels and resting-state networks to estimate correlates of mood disorder and related research domain criteria constructs of reward responsiveness and inhibitory control. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bamorovat, M.; Sharifi, I.; Rashedi, E.; Shafiian, A.; Sharifi, F.; Khosravi, A.; Tahmouresi, A. A novel diagnostic and prognostic approach for unresponsive patients with anthroponotic cutaneous leishmaniasis using artificial neural networks. PLoS ONE 2021, 16, e0250904. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ao, X.; Qin, Z.; Chi, J.; Feng, J.; Yang, H.; He, Q. Pick and choose: A GNN-based imbalanced learning approach for fraud detection. In Proceedings of the World Wide Web Conference, WWW 2021, Ljubljana, Slovenia, 19–23 April 2021; Association for Computing Machinery, Inc.: New York, NY, USA, 2021; pp. 3168–3177. [Google Scholar] [CrossRef]
- Khemani, B.; Patil, S.; Kotecha, K.; Tanwar, S. A review of graph neural networks: Concepts, architectures, techniques, challenges, datasets, applications, and future directions. J. Big Data 2024, 11, 18. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101850. [Google Scholar] [CrossRef]
- Metsch, J.M.; Saranti, A.; Angerschmid, A.; Pfeifer, B.; Klemt, V.; Holzinger, A.; Hauschild, A.-C. CLARUS: An interactive explainable AI platform for manual counterfactuals in graph neural networks. J. Biomed. Inform. 2024, 150, 104600. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. De La Inf. 2020, 29, e290103. [Google Scholar] [CrossRef]
Times Cited (WoS) | Pub. Year | Authors | Title | Type of Document | Source |
---|---|---|---|---|---|
30,678 | 1998 | LeCun, Y et al. [43] | Gradient-based learning applied to document recognition | Review | Proceedings of the IEEE |
28,498 | 1998 | Watts, DJ and Strogatz, SH [44] | Collective dynamics of ‘small-world’ networks | Article | Nature |
14,454 | 2016 | Abadi, M et al. [45] | TensorFlow: A system for large-scale machine learning | Proceedings Paper | Proceedings of OSDI’16: 12th USENIX Symposium on Operating Systems Design and Implementation |
7835 | 2006 | Boccaletti, S et al. [46] | Complex networks: Structure and dynamics | Review | Physics Reports-review Section of Physics Letters |
5056 | 2019 | Shorten, C and Khoshgoftaar, TM [47] | A survey on Image Data Augmentation for Deep Learning | Article | Journal of Big Data |
4747 | 2014 | Perozzi, B et al. [48] | DeepWalk: Online Learning of Social Representations | Proceedings Paper | Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining |
4613 | 2021 | Wu, Z et al. [4] | A Comprehensive Survey on Graph Neural Networks | Article | IEEE Transactions on Neural Networks and Learning Systems |
4043 | 2009 | Scarselli, F et al. [8] | The Graph Neural Network Model | Article | IEEE Transactions on Neural Networks |
3781 | 2016 | Defferrard, M et al. [49] | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering | Proceedings Paper | 30th Conference on Neural Information Processing Systems |
3568 | 2017 | Dai, J et al. [50] | Deformable Convolutional Networks | Proceedings Paper | 2017 IEEE International Conference on Computer Vision (ICCV) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, A.M.B.; Ferreira, N.C.d.S.; Braga, L.A.M.; Mota, F.B.; Maricato, V.; Alves, L.A. Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications. Information 2024, 15, 626. https://doi.org/10.3390/info15100626
da Silva AMB, Ferreira NCdS, Braga LAM, Mota FB, Maricato V, Alves LA. Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications. Information. 2024; 15(10):626. https://doi.org/10.3390/info15100626
Chicago/Turabian Styleda Silva, Annielle Mendes Brito, Natiele Carla da Silva Ferreira, Luiza Amara Maciel Braga, Fabio Batista Mota, Victor Maricato, and Luiz Anastacio Alves. 2024. "Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications" Information 15, no. 10: 626. https://doi.org/10.3390/info15100626
APA Styleda Silva, A. M. B., Ferreira, N. C. d. S., Braga, L. A. M., Mota, F. B., Maricato, V., & Alves, L. A. (2024). Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications. Information, 15(10), 626. https://doi.org/10.3390/info15100626