Pneumonia Image Classification Using DenseNet Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Resources
- Hardware: Dual NVIDIA GeForce RTX 4070 GPUs
- Memory: 128 GB RAM
- Software: PyTorch 2.4.0 with CUDA 12.4
2.2. Dataset
2.3. Hyperparameters
2.4. Image Enhancement Techniques
Resizing
2.5. Normalization
2.6. Transformers
2.7. DenseNet Network
2.8. Model Description
- Pre-trained DenseNet Models: Each variant starts with a pre-trained DenseNet network, initially trained on the ImageNet dataset. These pre-trained weights are optimized for feature extraction from images, which is crucial for efficiently addressing the vanishing gradient problem.
- Freezing Weights: All parameters of the pre-trained DenseNet are frozen, meaning that during training, only the weights of the new classification layer are updated. This approach leverages the learned feature representations from the DenseNet models while focusing training on adapting the final layer for the binary classification task.
- Custom Classification Layer: The final classification layer of each DenseNet model is replaced with a new fully connected layer (nn.Linear(num_ftrs, 1)). This layer outputs a single logit score per input, which is used for binary classification.
2.8.1. DenseNet Architecture: In-Depth Analysis
Core Concepts
Key Components
Model Variants
Implementation Details
- Class XrayClassifier:
- Function initialize(num_classes):
- # Load a pre-trained DenseNet model (121, 169, or 201 variant)
- model = load_pretrained_densenet()
- # Freeze all layers of the pre-trained model
- For each layer in model:
- set layer to non-trainable
- # Get the number of features from the pre-trained
- # model’s classifier layer
- num_features = extract_features_from_classifier(model)
- # Replace the pre-trained classifier with a new one
- # for X-ray classification (binary in this case)
- model.classifier = create_new_classifier(num_features, num_classes)
- Function forward(input):
- # Pass the input through the model
- return model(input)
3. Results
3.1. Evaluation
3.2. Experiments
4. Analysis of DenseNet Training Time and Accuracy
4.1. Comparative Analysis of DenseNet Variants
4.2. Analysis of Root Causing Parameters
4.2.1. Learning Rate
4.2.2. Data Augmentation
4.2.3. Dataset Characteristics
4.3. Performance Metrics
5. Future Research Recommendations
5.1. Larger and More Diverse Datasets
5.2. Advanced Data Augmentation Techniques
5.3. Sophisticated Fine-Tuning Strategies
5.4. Attention Mechanisms and Interpretability
5.5. Multi-Task Learning and Clinical Integration
5.6. Model Efficiency and Deployment
6. Discussion
Comparison of DenseNet121 Performance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
DenseNet | Densely Connected Convolutional Networks |
DenseNet121 | DenseNet variant with 121 layers |
DenseNet169 | DenseNet variant with 169 layers |
DenseNet201 | DenseNet variant with 201 layers |
GPU | Graphics Processing Unit |
CUDA | Compute Unified Device Architecture |
References
- McLuckie, A. Respiratory Disease and Its Management; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization Pneumonia, KEY Facts. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 23 August 2024).
- World Health Organization. 2024. Available online: https://www.who.int/health-topics/pneumonia/ (accessed on 23 August 2024).
- Malik, H.; Anees, T.; Al-Shamaylehs, A.S.; Alharthi, S.Z.; Khalil, W.; Akhunzada, A. Deep Learning-Based Classification of Chest Diseases Using X-rays, CT Scans, and Cough Sound Images. Diagnostics 2023, 13, 2772. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Rajpurkar, P. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:abs/1711. [Google Scholar]
- Zhong, Z.; Zheng, M.; Mai, H.; Zhao, J.; Liu, X. Cancer image classification based on DenseNet model. J. Phys. Conf. Ser. 2020, 1651, 012143. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Breviglieri, P.C. Pneumonia X-ray Dataset. 2024. Available online: https://www.kaggle.com/datasets/pcbreviglieri/pneumonia-xray-images (accessed on 23 August 2024).
- Arora, A. DenseNet architecture. Retrieved from Amaarora’s Blog. 2020. Available online: https://amaarora.github.io/posts/2020-08-02-densenets.html (accessed on 23 August 2024).
- Kundu, R.; Das, R.; Geem, Z.W.; Han, G.T.; Sarkar, R. Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PLoS ONE 2021, 16, e0256630. [Google Scholar] [CrossRef] [PubMed]
- Ikechukwu, A.V.; Murali, S.; Deepu, R.; Shivamurthy, R.C. ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images. Glob. Transit. Proc. 2021, 2, 375–381. [Google Scholar] [CrossRef]
- An, Q.; Chen, W.; Shao, W. A Deep Convolutional Neural Network for Pneumonia Detection in X-ray Images with Attention Ensemble. Diagnostics 2024, 14, 390. [Google Scholar] [CrossRef]
Variant | Layers | Parameters | Dense Blocks |
---|---|---|---|
DenseNet121 | 121 | 7 M | 6-12-24-16 |
DenseNet169 | 169 | 14 M | 6-12-32-32 |
DenseNet201 | 201 | 20 M | 6-12-48-32 |
Metric | DenseNet121 | DenseNet169 | DenseNet201 |
---|---|---|---|
Training Time | 22 m 27 s | 25 m 3 s | 32 m 44 s |
Prediction Time | 0.011 s | 0.015 s | 0.032 s |
Class 0 Precision | 96% | 93% | 92% |
Class 0 Recall | 91% | 92% | 95% |
Class 0 F1-Score | 93% | 93% | 94% |
Class 0 Support | 179 | 179 | 179 |
Class 1 Precision | 96% | 97% | 98% |
Class 1 Recall | 98% | 97% | 97% |
Class 1 F1-Score | 97% | 97% | 97% |
Class 1 Support | 407 | 407 | 407 |
Accuracy | 96% | 96% | 96% |
Macro Avg Precision | 96% | 95% | 95% |
Macro Avg Recall | 95% | 95% | 96% |
Macro Avg F1-Score | 95% | 95% | 95% |
Macro Avg Support | 586 | 586 | 586 |
Epoch | Metric | DenseNet121 (A) | DenseNet169 (B) | DenseNet201 (C) |
---|---|---|---|---|
Train Loss | 0.27 | 0.24 | 0.25 | |
10 | Val Loss Train Acc | 0.24 0.92 | 0.21 0.92 | 0.22 0.91 |
Val Acc | 0.94 | 0.95 | 0.94 | |
Train Loss | 0.22 | 0.20 | 0.21 | |
20 | Val Loss Train Acc | 0.19 0.93 | 0.18 0.93 | 0.18 0.93 |
Val Acc | 0.95 | 0.95 | 0.95 | |
Train Loss | 0.20 | 0.19 | 0.19 | |
30 | Val Loss Train Acc | 0.18 0.93 | 0.16 0.93 | 0.16 0.93 |
Val Acc | 0.95 | 0.95 | 0.95 | |
Train Loss | 0.19 | 0.18 | 0.18 | |
40 | Val Loss Train Acc | 0.16 0.93 | 0.15 0.94 | 0.14 0.94 |
Val Acc | 0.95 | 0.96 | 0.95 | |
Train Loss | 0.18 | 0.17 | 0.17 | |
50 | Val Loss Train Acc | 0.15 0.93 | 0.14 0.94 | 0.13 0.94 |
Val Acc | 0.95 | 0.96 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bundea, M.; Danciu, G.M. Pneumonia Image Classification Using DenseNet Architecture. Information 2024, 15, 611. https://doi.org/10.3390/info15100611
Bundea M, Danciu GM. Pneumonia Image Classification Using DenseNet Architecture. Information. 2024; 15(10):611. https://doi.org/10.3390/info15100611
Chicago/Turabian StyleBundea, Mihai, and Gabriel Mihail Danciu. 2024. "Pneumonia Image Classification Using DenseNet Architecture" Information 15, no. 10: 611. https://doi.org/10.3390/info15100611
APA StyleBundea, M., & Danciu, G. M. (2024). Pneumonia Image Classification Using DenseNet Architecture. Information, 15(10), 611. https://doi.org/10.3390/info15100611