Investigating the Relationship of User Acceptance to the Characteristics and Performance of an Educational Software in Byzantine Music
Abstract
:1. Introduction
2. Related Work and Literature Review
2.1. Edu S/W in Vocal Music
2.2. User Acceptance
2.3. Evaluation and Characteristics
2.4. User Evaluation and Performance
3. Case Study
3.1. Research Questions
3.2. Sample
3.3. Measures
3.4. Consistency of the Survey
3.5. Statistical Analysis
4. Results
4.1. Data Properties
4.2. Measurement Model
4.3. The Structural Model
4.4. Testing the Hypothesis
5. Discussion
5.1. Implications for Theory
5.2. Implications for Practice
6. Threats to Validity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stephanidis, C.; Salvendy, G.; Antona, M.; Chen, J.Y.C.; Dong, J.; Duffy, V.G.; Fang, X.; Fidopiastis, C.; Fragomeni, G.; Fu, L.P.; et al. Seven HCI Grand Challenges. Int. J. Hum.-Comput. Interact. 2019, 35, 1229–1269. [Google Scholar] [CrossRef]
- Winslow, J.; Dickerson, J.; Lee, C.-Y. Applied Technologies for Teachers, 1st ed.; Kendall Hunt Publishing: Dubuque, IA, USA, 2013. [Google Scholar]
- Reeves, T.C.; Harmon, S.W. Systematic Evaluation Procedures for Interactive Multimedia for Education and Training. In Multimedia Computing: Preparing for the 21st Century; Reisman, S., Ed.; IGI Global: Hershey, PA, USA, 1996. [Google Scholar]
- Cronjé, J. Paradigms Regained: Toward Integrating Objectivism and Constructivism in Instructional Design and the Learning Sciences. Educ. Technol. Res. Dev. 2006, 54, 387–416. [Google Scholar] [CrossRef]
- Ehlers, U.-D.; Pawlowski, J.M. Handbook on Quality and Standardisation in E-Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Georgiadou, E.; Economides, A. An Evaluation Instrument for Hypermedia Courseware. Educ. Technol. Soc. 2003, 6, 31–33. [Google Scholar]
- Phillips, R. Challenging The Primacy Of Lectures: The Dissonance Between Theory And Practice In University Teaching. J. Univ. Teach. Learn. Pract. 2005, 2, 4–15. [Google Scholar] [CrossRef]
- Schibeci, R.; Lake, D.; Phillips, R.; Lowe, K.; Cummings, R.; Miller, E. Evaluating the Use of Learning Objects in Australian and New Zealand Schools. Comput. Educ. 2008, 50, 271–283. [Google Scholar] [CrossRef]
- Coughlan, J.; Morar, S.S. Development of a Tool for Evaluating Multimedia for Surgical Education. J. Surg. Res. 2008, 149, 94–100. [Google Scholar] [CrossRef]
- Roblyer, M.D.; Wiencke, W.R. Design and Use of a Rubric to Assess and Encourage Interactive Qualities in Distance Courses. Am. J. Distance Educ. 2003, 17, 77–98. [Google Scholar] [CrossRef]
- Albakri, A.; Abdulkhaleq, A. An Interactive System Evaluation of Blackboard System Applications: A Case Study of Higher Education. In Fostering Communication and Learning With Underutilized Technologies in Higher Education; IGI Global: Hershey, PA, USA, 2020; pp. 123–136. [Google Scholar] [CrossRef]
- Chang, A.; Breazeal, C.; Knight, H.; Dan Stiehl, W.; Toscano, R.; Wang, Y.; Breazeal Personal Robots Group, C. Robot Design Rubrics for Social Gesture Categorization and User Studies with Children. In Proceedings of the HRI Workshop on Acceptance of Robots in Society, San Diego, CA, USA, 11–13 March 2009. [Google Scholar]
- Carole, P.J. Alternative Assessment in Music Education. 1995. Available online: https://eric.ed.gov/?id=ED398141 (accessed on 1 July 2023).
- Bevilacqua, F.; Guédy, F.; Schnell, N.; Fléty, E.; Leroy, N. Wireless Sensor Interface and Gesture-Follower for Music Pedagogy. In Proceedings of the 7th International Conference on New Interfaces for Musical Expression, NIME ’07, New York, NY, USA, 6–10 June 2007; pp. 124–129. [Google Scholar] [CrossRef]
- Pérez-Gil, M.; Tejada, J.; Morant, R.; Pérez-González De Martos, A. Cantus: Construction and Evaluation of a Software Solution for Real-Time Vocal Music Training and Musical Intonation Assessment. J. Music. Technol. Educ. 2016, 9, 125–144. [Google Scholar] [CrossRef]
- Tomczyk, Ł.; Limone, P.; Guarini, P. Evaluation of modern educational software and basic digital competences among teachers in Italy. Innov. Educ. Teach. Int. 2023, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, X. Design of Vocal Music Teaching System Platform for Music Majors Based on Artificial Intelligence. Wirel. Commun. Mob. Comput. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Proceedings of the 2023 2nd International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2023); Hemachandran, K.; Boddu, R.S.K.; Alhasan, W. (Eds.) Springer: Berlin/Heidelberg, Germany, 2023; Volume 9. [Google Scholar]
- Han, X. Design of Vocal Music Education System Based on VR Technology. Procedia Comput. Sci. 2022, 208, 5–11. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, Z. February. Design of Vocal Music Self-Study Assistant System based on Android Technology. In Proceedings of the 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 24–25 February 2023; pp. 1–6. [Google Scholar]
- Bergmann, J.H.M.; McGregor, A.H. Body-Worn Sensor Design: What Do Patients and Clinicians Want? Ann. Biomed. Eng. 2011, 39, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems; Massachusetts Institute of Technology: Cambridge, MA, USA, 1986. [Google Scholar]
- Ibrahim, R.; Leng, N.S.; Yusoff, R.C.M.; Samy, G.N.; Masrom, S.; Rizman, Z.I. E-Learning Acceptance Based on Technology Acceptance Model (TAM). J. Fundam. Appl. Sci. 2017, 9, 871–889. [Google Scholar] [CrossRef]
- Lewis, J.R. The System Usability Scale: Past, Present, and Future. Int. J. Hum.-Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Vlachogianni, P.; Tselios, N. Perceived Usability Evaluation of Educational Technology Using the System Usability Scale (SUS): A Systematic Review. J. Res. Technol. Educ. 2021, 54, 392–409. [Google Scholar] [CrossRef]
- Papadakis, S.; Vaiopoulou, J.; Kalogiannakis, M.; Stamovlasis, D. Developing and Exploring an Evaluation Tool for Educational Apps (E.T.E.A.) Targeting Kindergarten Children. Sustainability 2020, 12, 4201. [Google Scholar] [CrossRef]
- Lewis, J.R. Measuring Perceived Usability: The CSUQ, SUS, and UMUX. Int. J. Hum.-Comput. Interact. 2018, 34, 1148–1156. [Google Scholar] [CrossRef]
- Alhadreti, O. Assessing Academics’ Perceptions of Blackboard Usability Using SUS and CSUQ: A Case Study during the COVID-19 Pandemic. Int. J. Hum.-Comput. Interact. 2021, 37, 1003–1015. [Google Scholar] [CrossRef]
- Singla, B.S.; Aggarwal, H. A Set of Usability Heuristics and Design Recommendations for Higher Education Institutions’ Websites. Int. J. Inf. Syst. Model. Des. 2020, 11, 58–73. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.2020010104 (accessed on 1 July 2023). [CrossRef]
- Hasan, L. Evaluating the Usability of Educational Websites Based on Students’ Preferences of Design Characteristics Usability of e-Learning Systems: The Case of Moodle View Project Usability of Educational Websites View Project Evaluating the Usability of Educational Websites Based on Students’ Preferences of Design Characteristics. Int. Arab. J. e-Technol. 2014, 3, 179–193. [Google Scholar]
- Albelbisi, N.A.; Al-Adwan, A.S.; Habibi, A. Self-Regulated Learning and Satisfaction: A Key Determinants of MOOC Success. Educ. Inf. Technol. 2021, 26, 3459–3481. [Google Scholar] [CrossRef]
- Torkzadeh, R.; Pflughoeft, K.; Hall, L. Computer Self-Efficacy, Training Effectiveness and User Attitudes: An Empirical Study. Behav. Inf. Technol. 2010, 18, 299–309. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, S.B. A Study on the Effect of SW Education Training Characteristics on Personal Characteristics and Educational Outcomes. J. Inst. Internet Broadcast. Commun. 2020, 20, 247–259. [Google Scholar]
- Huang, Y.M. Students’ Continuance Intention Toward Programming Games: Hedonic and Utilitarian Aspects. Int. J. Hum.-Comput. Interact. 2019, 36, 393–402. [Google Scholar] [CrossRef]
- Race, P. The Lecturer’s Toolkit: A Practical Guide to Assessment, Learning and Teaching; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Conole, G. A New Classification Schema for MOOCs. Int. J. Innov. Qual. Learn. 2014, 2, 65–77. [Google Scholar]
- Yousef, A.M.F.; Chatti, M.A.; Schroeder, U.; Wosnitza, M. A Usability Evaluation of a Blended MOOC Environment: An Experimental Case Study. Int. Rev. Res. Open Distrib. Learn. 2015, 16, 69–93. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Hum.-Comput. Interact. 2018, 35, 456–467. [Google Scholar] [CrossRef]
- Torkzadeh, G.; Van Dyke, T.P. Effects of Training on Internet Self-Efficacy and Computer User Attitudes. Comput. Human Behav. 2002, 18, 479–494. [Google Scholar] [CrossRef]
- Lanzilotti, R.; Ardito, C.; Costabile, M.F.; De Angeli, A. ELSE Methodology: A Systematic Approach to the e-Learning Systems Evaluation. Educ. Technol. Soc. 2006, 9, 42–53. [Google Scholar]
- Zaharias, P.; Poylymenakou, A. Developing a Usability Evaluation Method for E-Learning Applications: Beyond Functional Usability. Int. J. Hum.-Comput. Interact. 2009, 25, 75–98. [Google Scholar] [CrossRef]
- Kukulska-Hulme, A.; Beirne, E.; Conole, G.; Costello, E.; Coughlan, T.; Ferguson, R.; FitzGerald, E.; Gaved, M.; Herodotou, C.; Holmes, W.; et al. Innovating Pedagogy 2020: Open University Innovation Report 8. Альманах Научных Рабoт Мoлoдых Ученых Университета Итмo 2020, 3, 144–147. [Google Scholar]
- Jawahar, I.M.; Elango, B. The Effect of Attitudes, Goal Setting and Self-Efficacy on End User Performance. J. Organ. End User Comput. 2001, 13, 40–45. [Google Scholar] [CrossRef]
- Hale, C.L. Primary Students’ Attitudes towards Their Singing Voice and the Possible Relationship to Gender, Singing Skill and Participation in Singing Activities; Kansas State University: Manhattan, KS, USA, 2006. [Google Scholar]
- Salapatas, D. The role of women in the orthodox church. Z. Des Inst. Für Orthodox. Theol. Der Univ. München 2015, 2, 177–194. [Google Scholar]
- Lee, C.-Y.; Cherner, T.S. A Comprehensive Evaluation Rubric for Assessing Instructional Apps. J. Inf. Technol. Educ. Res. 2015, 14, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Katou, A.A.; Budhwar, P.S. The Effect of Human Resource Management Policies on Organizational Performance in Greek Manufacturing Firms. Thunderbird Int. Bus. Rev. 2007, 49, 1–35. [Google Scholar] [CrossRef]
- Park, S.Y. An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Turnley, W.H.; Feldman, D.C. Re-Examining the Effects of Psychological Contract Violations: Unmet Expectations and Job Dissatisfaction as Mediators. J. Organ Behav. 2000, 21, 25–42. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Hair, J., Jr.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Luna-Arocas, R.; Camps, J. A Model of High Performance Work Practices and Turnover Intentions. Pers. Rev. 2008, 37, 26–46. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables. In Structural Equations with Latent Variables; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–514. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A. Confirmatory Factor Analysis. Handbook of Structural Equation Modeling, 361, 379; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Pedhazur, E.J.; Schmelkin Pedhazur, L. Measurement, Design, and Analysis: An Integrated Approach, 1st ed.; Psychology Press: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Runeson, P.; Höst, M.; Rainer, A.; Regnell, B. Case Study Research in Software Engineering: Guidelines and Examples; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
CONSTRUCTS | Means (Standard Deviations) | Cronbach Alphas | Correlation Coefficients | ||||||
---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |||
F1. INFORMATION | 3.65 (0.64) | 0.827 | [0.743] | ||||||
F2. DESIGN | 3.61 (0.63) | 0.821 | 0.862 | [0.664] | |||||
F3. ENGAGEMENT | 3.60 (0.68) | 0.812 | 0.822 | 0.774 | [0.727] | ||||
F4. PERCEIVED USEFULNESS | 3.50 (0.73) | 0.802 | 0.687 | 0.658 | 0.698 | [0.718] | |||
F5. ATTITUDE | 3.52 (0.72) | 0.806 | 0.795 | 0.700 | 0.725 | 0.807 | [0.724] | ||
F6. USER SATISFACTION | 3.48 (0.74) | 0.800 | 0.544 | 0.544 | 0.560 | 0.770 | 0.737 | [0.715] | |
F7. PERFORMANCE | 3.64 (0.66) | 0.870 | 0.737 | 0.736 | 0.696 | 0.677 | 0.720 | 0.592 | [0.720] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinidis, K.-H.; Patronas, G.; Goudos, S.K.; Maikantis, T.; Nikolaidis, N. Investigating the Relationship of User Acceptance to the Characteristics and Performance of an Educational Software in Byzantine Music. Information 2023, 14, 568. https://doi.org/10.3390/info14100568
Kokkinidis K-H, Patronas G, Goudos SK, Maikantis T, Nikolaidis N. Investigating the Relationship of User Acceptance to the Characteristics and Performance of an Educational Software in Byzantine Music. Information. 2023; 14(10):568. https://doi.org/10.3390/info14100568
Chicago/Turabian StyleKokkinidis, Konstantinos-Hercules, Georgios Patronas, Sotirios K. Goudos, Theodoros Maikantis, and Nikolaos Nikolaidis. 2023. "Investigating the Relationship of User Acceptance to the Characteristics and Performance of an Educational Software in Byzantine Music" Information 14, no. 10: 568. https://doi.org/10.3390/info14100568
APA StyleKokkinidis, K. -H., Patronas, G., Goudos, S. K., Maikantis, T., & Nikolaidis, N. (2023). Investigating the Relationship of User Acceptance to the Characteristics and Performance of an Educational Software in Byzantine Music. Information, 14(10), 568. https://doi.org/10.3390/info14100568