A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things
Abstract
:1. Introduction
- We propose an AI model-based DL and different machine and ensemble learning classifiers to detect cyber-attacks on the IoT with SMOTE (Synthetic Minority Over-sampling Technique) implementation to yield significant results [17];
- We improve the accuracy and confidence of cybersecurity attack detection in IoT environments compared to current works;
- We produce more accurate and reliable predictions, leading to improved IoT security by preventing unauthorized access, data breaches, and service interruptions;
- We enhance the generalization capabilities of the developed models by addressing the class imbalance issues commonly observed in IoT cybersecurity datasets through the application of SMOTE [18];
- We bring an understanding of the optimal application of DL and ensemble learning models as cybersecurity attack prediction classifiers.
2. Literature Review
3. Materials and Methods
3.1. Bot-IoT Dataset
- Benign category: normal, legitimate IoT network activity without malicious intent; DDoS TCP attacks flood a network with TCP requests, rendering it inaccessible to authorized users;
- UDP-focused DDoS attacks: these flood networks with packets, causing disruptions and service outages;
- DDoS HTTP attacks: these flood web servers with HTTP requests, causing degraded performance or service disruption;
- TCP DoS attacks: these exploit TCP stack vulnerabilities to exhaust device/network resources and render them unresponsive/unavailable;
- UDP DoS attacks: these flood the target with many packets, leading to resource exhaustion and service disruptions;
- HTTP-based DoS attacks: these overload web servers with excessive requests, causing degraded performance or unavailability;
- Keylogging: the covert monitoring and recording of keystrokes on a compromised device, used for malicious purposes to steal sensitive information;
- Capture of data: the unauthorized capture and exfiltration of information from compromised IoT networks/devices.
3.2. The Proposed Model
3.2.1. Data Pre-Processing
3.2.2. Feature Engineering Techniques
- Correlation Coefficient
- 2.
- Feature Importance using Random Forest
- 3.
- SMOTE Approach
3.3. Ensemble Learning
- Extra Trees classifier
- Histogram-based Gradient Boosting classifier
- Adaptive Boosting classifier
- LGBM classifier
- CatBoosting classifier
3.4. Evaluation Metrics
- True positive rate (TPR): ratio of observed positives to expected positives;
- False positive rate (FPR): ratio of values that are truly negative but are expected to be positive;
- False negative rate (FNR): ratio values that are in fact positive but are projected to be negative;
- True negative rate (TNR): ratio values that are negative and anticipated to become negative;
- Precision: the capacity of a system to accurately detect the existence of an attack or security breach; it illustrates the relationship between precisely predicted attacks and actual consequences:
- Recall: the system’s ability to correctly recognize a botnet attack when it occurs on a network:
- Accuracy: the system’s ability to effectively classify attack and non-attack packets; it represents the percentage of accurate predictions relative to the total number of samples:
- F1-score: average of recall and precision; it provides the percentage of normal and attacking flow samples accurately anticipated in the testing sample:
- Time complexity: how quickly or slowly an algorithm performs in the same relation to the amount of data.
4. Results
4.1. Experimental Settings
4.2. Experimental Results
4.2.1. Experiments without Using the SMOTE Algorithm
4.2.2. Experiments Using the SMOTE Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vermesan, O.; Friess, P.; Guillemin, P.; Giaffreda, R.; Grindvoll, H.; Eisenhauer, M.; Serrano, M.; Moessner, K.; Spirito, M.; Blystad, L.-C. Internet of Things beyond the Hype: Research, Innovation and Deployment. In Building the Hyperconnected Society-Internet of Things Research and Innovation Value Chains, Ecosystems and Markets; River Publishers: Gistrup, Denmark, 2022; pp. 15–118. ISBN 1-00-333745-7. [Google Scholar]
- Madina, S.F.; Islam, M.S.; Alamgir, F.M.; Ferdous, M.F. Internet of Things (IoT)-Based Industrial Monitoring System. In Industrial Internet of Things; CRC Press: Boca Raton, FL, USA, 2022; pp. 55–86. ISBN 1-00-310226-3. [Google Scholar]
- Huang, L. Design of an IoT DDoS Attack Prediction System Based on Data Mining Technology. J. Supercomput. 2022, 78, 4601–4623. [Google Scholar] [CrossRef]
- Krichen, M. A Survey on Formal Verification and Validation Techniques for Internet of Things. Appl. Sci. 2023, 13, 8122. [Google Scholar] [CrossRef]
- Idrissi, I.; Azizi, M.; Moussaoui, O. IoT Security with Deep Learning-Based Intrusion Detection Systems: A Systematic Literature Review. In Proceedings of the 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10. [Google Scholar]
- Krichen, M. Strengthening the Security of Smart Contracts through the Power of Artificial Intelligence. Computers 2023, 12, 107. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Krichen, M.; Yiltas-Kaplan, D.; Ben Dhaou, I.; Adoni, W.Y.H. Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey. Sustainability 2023, 15, 11713. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Oseni, A.; Moustafa, N.; Creech, G.; Sohrabi, N.; Strelzoff, A.; Tari, Z.; Linkov, I. An Explainable Deep Learning Framework for Resilient Intrusion Detection in IoT-Enabled Transportation Networks. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1000–1014. [Google Scholar] [CrossRef]
- Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature Engineering and Deep Learning-Based Intrusion Detection Framework for Securing Edge IoT. J. Supercomput. 2022, 78, 8852–8866. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial Intelligence and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Boulila, W.; Driss, M.; Alshanqiti, E.; Al-Sarem, M.; Saeed, F.; Krichen, M. Weight Initialization Techniques for Deep Learning Algorithms in Remote Sensing: Recent Trends and Future Perspectives. In Advances on Smart and Soft Computing; Saeed, F., Al-Hadhrami, T., Mohammed, E., Al-Sarem, M., Eds.; Springer: Singapore, 2022; pp. 477–484. [Google Scholar]
- Islam, U.; Muhammad, A.; Mansoor, R.; Hossain, M.S.; Ahmad, I.; Eldin, E.T.; Khan, J.A.; Rehman, A.U.; Shafiq, M. Detection of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning Models. Sustainability 2022, 14, 8374. [Google Scholar] [CrossRef]
- Vadivelan, N.; Bhargavi, K.; Kodati, S.; Nalini, M. Detection of Cyber Attacks Using Machine Learning. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2405, p. 030003. [Google Scholar]
- Ahmad, R.; Alsmadi, I.; Alhamdani, W.; Tawalbeh, L. A Comprehensive Deep Learning Benchmark for IoT IDS. Comput. Secur. 2022, 114, 102588. [Google Scholar] [CrossRef]
- Iwendi, C.; Rehman, S.U.; Javed, A.R.; Khan, S.; Srivastava, G. Sustainable Security for the Internet of Things Using Artificial Intelligence Architectures. ACM Trans. Internet Technol. 2021, 21, 1–22. [Google Scholar] [CrossRef]
- Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary. J. Artif. Intell. Res. 2018, 61, 63–905. Available online: https://www.jair.org/index.php/jair/article/view/11192 (accessed on 24 September 2023). [CrossRef]
- Torgo, L.; Ribeiro, R.P.; Pfahringer, B.; Branco, P. SMOTE for Regression. In Progress in Artificial Intelligence; Correia, L., Reis, L.P., Cascalho, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 378–389. [Google Scholar]
- Khan, A.; Cotton, C. Efficient Attack Detection in IoT Devices Using Feature Engineering-Less Machine Learning. arXiv 2023, arXiv:2301.03532. [Google Scholar] [CrossRef]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Aswad, F.M.; Ahmed, A.M.S.; Alhammadi, N.A.M.; Khalaf, B.A.; Mostafa, S.A. Deep Learning in Distributed Denial-of-Service Attacks Detection Method for Internet of Things Networks. J. Intell. Syst. 2023, 32, 20220155. [Google Scholar] [CrossRef]
- A Heuristic Distributed Scheme to Detect Falsification of Mobility Patterns in Internet of Vehicles. Available online: https://ieeexplore.ieee.org/abstract/document/9445064 (accessed on 24 September 2023).
- Mendonça, R.V.; Silva, J.C.; Rosa, R.L.; Saadi, M.; Rodriguez, D.Z.; Farouk, A. A Lightweight Intelligent Intrusion Detection System for Industrial Internet of Things Using Deep Learning Algorithms. Expert Syst. 2022, 39, e12917. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Friha, O.; Maglaras, L.; Janicke, H.; Shu, L. Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis. IEEE Access 2021, 9, 138509–138542. [Google Scholar] [CrossRef]
- Popoola, S.I.; Ande, R.; Adebisi, B.; Gui, G.; Hammoudeh, M.; Jogunola, O. Federated Deep Learning for Zero-Day Botnet Attack Detection in IoT-Edge Devices. IEEE Internet Things J. 2021, 9, 3930–3944. [Google Scholar] [CrossRef]
- Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gui, G.; Gacanin, H. Hybrid Deep Learning for Botnet Attack Detection in the Internet-of-Things Networks. IEEE Internet Things J. 2020, 8, 4944–4956. [Google Scholar] [CrossRef]
- Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet Attack Detection Using Local Global Best Bat Algorithm for Industrial Internet of Things. Electronics 2021, 10, 1341. [Google Scholar] [CrossRef]
- Huma, Z.E.; Latif, S.; Ahmad, J.; Idrees, Z.; Ibrar, A.; Zou, Z.; Alqahtani, F.; Baothman, F. A Hybrid Deep Random Neural Network for Cyberattack Detection in the Industrial Internet of Things. IEEE Access 2021, 9, 55595–55605. [Google Scholar] [CrossRef]
- Chowdhury, M.; Ray, B.; Chowdhury, S.; Rajasegarar, S. A Novel Insider Attack and Machine Learning Based Detection for the Internet of Things. ACM Trans. Internet Things 2021, 2, 1–23. [Google Scholar] [CrossRef]
- Saharkhizan, M.; Azmoodeh, A.; Dehghantanha, A.; Choo, K.-K.R.; Parizi, R.M. An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic. IEEE Internet Things J. 2020, 7, 8852–8859. [Google Scholar] [CrossRef]
- Pokhrel, S.; Abbas, R.; Aryal, B. IoT Security: Botnet Detection in IoT Using Machine Learning. arXiv 2021, arXiv:2104.02231. [Google Scholar]
- Latif, S.; Zou, Z.; Idrees, Z.; Ahmad, J. A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight Random Neural Network. IEEE Access 2020, 8, 89337–89350. [Google Scholar] [CrossRef]
- The Bot-Iot Dataset; IEEE: Piscataway, NJ, USA, 2019; Volume 5.
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Garavand, A.; Behmanesh, A.; Aslani, N.; Sadeghsalehi, H.; Ghaderzadeh, M. Towards Diagnostic Aided Systems in Coronary Artery Disease Detection: A Comprehensive Multiview Survey of the State of the Art. Int. J. Intell. Syst. 2023, 2023, 6442756. Available online: https://www.hindawi.com/journals/ijis/2023/6442756/ (accessed on 24 September 2023). [CrossRef]
- Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Aria, M.; Asadi, F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Paradigm during the Pandemic. BioMed Res. Int. 2021, 2021, e9942873. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Nagisetty, A.; Gupta, G.P. Framework for Detection of Malicious Activities in IoT Networks Using Keras Deep Learning Library. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 633–637. [Google Scholar]
- González, S.; García, S.; Del Ser, J.; Rokach, L.; Herrera, F. A Practical Tutorial on Bagging and Boosting Based Ensembles for Machine Learning: Algorithms, Software Tools, Performance Study, Practical Perspectives and Opportunities. Inf. Fusion 2020, 64, 205–237. [Google Scholar] [CrossRef]
- Acosta, M.R.C.; Ahmed, S.; Garcia, C.E.; Koo, I. Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks. IEEE Access 2020, 8, 19921–19933. [Google Scholar] [CrossRef]
- Seyghaly, R.; Garcia, J.; Masip-Bruin, X.; Varnamkhasti, M.M. Interference Recognition for Fog Enabled IoT Architecture Using a Novel Tree-Based Method. In Proceedings of the 2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 1–3 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Alghamdi, R.; Bellaiche, M. Evaluation and Selection Models for Ensemble Intrusion Detection Systems in IoT. IoT 2022, 3, 285–314. [Google Scholar] [CrossRef]
- Almomani, O.; Almaiah, M.A.; Alsaaidah, A.; Smadi, S.; Mohammad, A.H.; Althunibat, A. Machine Learning Classifiers for Network Intrusion Detection System: Comparative Study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 440–445. [Google Scholar]
- Heinrich, C. On the Number of Bins in a Rank Histogram. Q. J. R. Meteorol. Soc. 2021, 147, 544–556. [Google Scholar] [CrossRef]
- Wang, K.; Lu, J.; Liu, A.; Zhang, G.; Xiong, L. Evolving Gradient Boost: A Pruning Scheme Based on Loss Improvement Ratio for Learning under Concept Drift. IEEE Trans. Cybern. 2021, 53, 2110–2123. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhu, H.; Chen, R.; Li, R. An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification. Appl. Sci. 2022, 12, 5872. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, X. The Detection of Network Intrusion Based on Improved Adaboost Algorithm. In Proceedings of the 2020 4th International Conference on Cryptography, Security and Privacy, Nanjing, China, 10–12 January 2020; pp. 84–88. [Google Scholar]
- Mishra, D.; Naik, B.; Nayak, J.; Souri, A.; Dash, P.B.; Vimal, S. Light Gradient Boosting Machine with Optimized Hyperparameters for Identification of Malicious Access in IoT Network. Digit. Commun. Netw. 2023, 9, 125–137. [Google Scholar] [CrossRef]
- Seth, S.; Singh, G.; Kaur Chahal, K. A Novel Time Efficient Learning-Based Approach for Smart Intrusion Detection System. J. Big Data 2021, 8, 111. [Google Scholar] [CrossRef]
- Sanjeetha, R.; Raj, A.; Saivenu, K.; Ahmed, M.I.; Sathvik, B.; Kanavalli, A. Detection and Mitigation of Botnet Based DDoS Attacks Using Catboost Machine Learning Algorithm in SDN Environment. Int. J. Adv. Technol. Eng. Explor. 2021, 8, 445. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2018; Volume 31. [Google Scholar]
- Ghaderzadeh, M.; Aria, M.; Hosseini, A.; Asadi, F.; Bashash, D.; Abolghasemi, H. A Fast and Efficient CNN Model for B-ALL Diagnosis and Its Subtypes Classification Using Peripheral Blood Smear Images. Int. J. Intell. Syst. 2022, 37, 5113–5133. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22753 (accessed on 24 September 2023). [CrossRef]
- Hosseini, A.; Eshraghi, M.A.; Taami, T.; Sadeghsalehi, H.; Hoseinzadeh, Z.; Ghaderzadeh, M.; Rafiee, M. A Mobile Application Based on Efficient Lightweight CNN Model for Classification of B-ALL Cancer from Non-Cancerous Cells: A Design and Implementation Study. Inform. Med. Unlocked 2023, 39, 101244. [Google Scholar] [CrossRef]
Type | Target | Count |
---|---|---|
BENIGN | Benign | 9543 |
DDoS TCP | Attack | 19,547,603 |
DDoS UDP | Attack | 18,965,106 |
DDoS HTTP | Attack | 19,771 |
DoS TCP | Attack | 12,315,997 |
DoS UDP | Attack | 20,659,491 |
DoS HTTP | Attack | 29,706 |
Keylogging | Keylogging | 1469 |
Data theft | Data theft | 118 |
Total | - | 73,370,443 |
Metric | Accuracy | Precision | Recall | F1-Score | CPU Time | Model Size (MB) |
---|---|---|---|---|---|---|
Random Forest | 0.9518 | 0.9538 | 0.9284 | 0.9403 | 21.6 s | 23.6 |
Extra Trees | 0.9674 | 0.9652 | 0.9517 | 0.9582 | 47.6 s | 598.7 |
KNN | 0.9083 | 0.9036 | 0.8869 | 0.8947 | 3.29 s | 13.6 |
SVM | 0.6121 | 0.6280 | 0.3598 | 0.3695 | 21 min 50 s | 12.2 |
HistGBoost | 0.9560 | 0.7488 | 0.7332 | 0.7321 | 13.4 s | 1.2 |
AdaBoost | 0.1211 | 0.4552 | 0.3482 | 0.0826 | 1 min 19 s | 0.31 |
LGBM | 0.9323 | 0.4665 | 0.4739 | 0.4690 | 36.1 s | 1.8 |
CatBoost | 0.9819 | 0.9686 | 0.9608 | 0.9646 | 2 min 55 s | 3.5 |
XGBoost | 0.9852 | 0.9806 | 0.9654 | 0.9727 | 2 min 43 s | 1.1 |
MLP | 0.7539 | 0.3031 | 0.2942 | 0.2850 | 31.5 s | 0.005 |
ANN | 0.8308 | 0.3308 | 0.4789 | 0.3701 | 13 min 48 s | 0.027 |
LSTM | 0.7701 | 0.4887 | 0.3476 | 0.3682 | 10 min 10 s | 7.7 |
GRU | 0.8536 | 0.6058 | 0.4517 | 0.4902 | 11 min 1 s | 7.7 |
RNN | 0.8682 | 0.9189 | 0.7631 | 0.8013 | 10 min 50 s | 1.6 |
Bagging | 0.9398 | 0.9324 | 0.9160 | 0.9238 | 2 min 54 s | 240.5 |
Metric | Accuracy | Precision | Recall | F1-Score | CPU Time | Model (MB) |
---|---|---|---|---|---|---|
CatBoost | 0.97661 | 0.91249 | 0.9815 | 0.94369 | 7 min 43 s | 3.48 |
XGBoost | 0.97986 | 0.94868 | 0.98084 | 0.96383 | 7 min 53 s | 1.22 |
MLP | 0.53336 | 0.31119 | 0.63571 | 0.32423 | 4 min 47 s | 0.02 |
ANN | 0.76594 | 0.61794 | 0.89682 | 0.63602 | 31 min 41 s | 0.03 |
LSTM | 0.83418 | 0.75511 | 0.92699 | 0.76773 | 30 min 6 s | 7.69 |
GRU | 0.87806 | 0.78463 | 0.93476 | 0.83175 | 29 min 50 s | 7.69 |
RNN | 0.87147 | 0.77572 | 0.94066 | 0.8257 | 27 min 3 s | 1.62 |
Bagging | 0.94099 | 0.91357 | 0.93127 | 0.92205 | 9 min 31 s | 350.73 |
Random Forest | 0.9425 | 0.90961 | 0.9635 | 0.9304 | 1 min 7 s | 29.60 |
Extra Trees | 0.90922 | 0.88756 | 0.8952 | 0.8906 | 3.43 s | 35.19 |
KNN | 0.90922 | 0.88756 | 0.8952 | 0.8906 | 3.43 s | 35.19 |
SVM | 0.59398 | 0.4853 | 0.63258 | 0.48259 | 1 h 18 min 19 s | 25.34 |
HistGboost | 0.97437 | 0.97758 | 0.97437 | 0.97511 | 47.6 s | 1.90 |
AdaBoost | 0.43068 | 0.32098 | 0.34041 | 0.25093 | 3 min 55 s | 0.31 |
LGBM | 0.98242 | 0.96029 | 0.98055 | 0.96986 | 4 min 5 s | 11.05 |
Ref. | Data Used | Methodology Used | Accuracy (%) |
---|---|---|---|
Mendonça et al. [23] | DS2OS, CICIDS2017 | Deep learning | 98 |
Popoola et al. [26] | BoT-IoT | LAE for dimensionality reduction and BLSTM classifier | 91.89 |
Alharbi et al. [27] | N-BaIoT | A Local–Global best Bat Algorithm for Neural Networks | 90 |
Saharkhizan et al. [30] | Modbus/TCP network traffic | LSTM and Ensemble learning | 98.99 |
Pokhrel et al. [31] | BoT-IoT | Deep learning | 87.4 |
Proposed | BoT-IoT | CatBoosting XGBoosting | 98.19 |
98.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhudaydi, O.A.; Krichen, M.; Alghamdi, A.D. A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things. Information 2023, 14, 550. https://doi.org/10.3390/info14100550
Alkhudaydi OA, Krichen M, Alghamdi AD. A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things. Information. 2023; 14(10):550. https://doi.org/10.3390/info14100550
Chicago/Turabian StyleAlkhudaydi, Omar Azib, Moez Krichen, and Ans D. Alghamdi. 2023. "A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things" Information 14, no. 10: 550. https://doi.org/10.3390/info14100550
APA StyleAlkhudaydi, O. A., Krichen, M., & Alghamdi, A. D. (2023). A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things. Information, 14(10), 550. https://doi.org/10.3390/info14100550