Using Precision Agriculture (PA) Approach to Select Suitable Final Disposal Sites for Energy Generation
Abstract
:1. Introduction
The Needs for Precision Agriculture
2. Materials and Methods
2.1. System Analysis and Design
2.2. Data Acquisition Component
2.3. User Interface Component
2.4. Data and Knowledge Base Component
2.5. Data Processing Component
2.6. Display Component
3. Results and Discussion
3.1. System Testing and Evaluation
3.1.1. Case Study Area
3.1.2. Criteria-Based Suitable Sites
3.1.3. System Evaluation
3.2. Implementation Issues
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Troschinetz, A.M.; Mihelcic, J.R. Sustainable recycling of municipal solid waste in developing countries. Waste Manag. 2009, 29, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Charles, W.; Walker, L.; Cord-Ruwisch, R. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 2009, 100, 2329–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprilia, A. Waste Management in Indonesia and Jakarta: Challenges and Way Forward. In Proceedings of the 23rd ASEF Summer University, Virtual, 20 September–15 November 2021; pp. 1–18. [Google Scholar]
- Nanda, M.A.; Wijayanto, A.K.; Imantho, H.; Nelwan, L.O.; Budiastra, I.W.; Seminar, K.B. Factors Determining Suitable Landfill Sites for Energy Generation from Municipal Solid Waste: A Case Study of Jabodetabek Area, Indonesia. Sci. World J. 2022, 2022, 9184786. [Google Scholar] [CrossRef]
- Quadri, M.W.; Dohare, D. Site selection and designing of landfill using Nexus approach. Energy Nexus 2021, 3, 100019. [Google Scholar] [CrossRef]
- Niazi, N.K.; Murtaza, B.; Bibi, I.; Shahid, M.; White, J.C.; Nawaz, M.F.; Bashir, S.; Shakoor, M.B.; Choppala, G.; Murtaza, G.; et al. Chapter 7—Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes. In Environmental Materials and Waste; Prasad, M.N.V., Shih, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 149–177. [Google Scholar]
- Hu, H.; Li, X.; Nguyen, A.D.; Kavan, P. A Critical Evaluation of Waste Incineration Plants in Wuhan (China) Based on Site Selection, Environmental Influence, Public Health and Public Participation. Int. J. Environ. Res. Public Health 2015, 12, 7593–7614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.-U. Power generation methods, tehniques and economical strategy. Int. Tech. Sci. J. 2014, 12, 43–61. [Google Scholar]
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lyu, T. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Ouda, O.K.; Raza, S.; Nizami, A.; Rehan, M.; Al-Waked, R.; Korres, N. Waste to Energy Potential: A Case Study of Saudi Arabia. Renew. Sust. Energ. Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Mutz, D.; Hengevoss, D.; Hugi, C.; Gross, T. Waste-to-Energy Options in Municipal Solid Waste Management A Guide for Decision Makers in Developing and Emerging Countries. Dtsch. Ges. Für Int. Zs. (GIZ) GmbH 2017. Available online: http://hdl.handle.net/11654/25779 (accessed on 14 November 2022).
- Li, G.; Hao, Y.; Yang, T.; Xiao, W.; Pan, M.; Huo, S.; Lyu, T. Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering 2022, 9, 637. [Google Scholar] [CrossRef]
- Akther, A.; Ahamed, T.; Noguchi, R.; Genkawa, T.; Takigawa, T. Site suitability analysis of biogas digester plant for municipal waste using GIS and multi-criteria analysis. Asia-Pac. J. Reg. Sci. 2019, 3, 61–93. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Okey-Onyesolu, F.C.; Ani, K.A.; Nwanna, E.C. GIS bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria. Renew. Energy 2021, 163, 1182–1194. [Google Scholar] [CrossRef]
- Feyzi, S.; Khanmohammadi, M.; Abedinzadeh, N.; Aalipour, M. Multi- criteria decision analysis FANP based on GIS for siting municipal solid waste incineration power plant in the north of Iran. Sustain. Cities Soc. 2019, 47, 101513. [Google Scholar] [CrossRef]
- Hariz, H.A.; Dönmez, C.Ç.; Sennaroglu, B. Siting of a central healthcare waste incinerator using GIS-based Multi-Criteria Decision Analysis. J. Clean. Prod. 2017, 166, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Alçada-Almeida, L.; Dias, L.C. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass Bioenergy 2014, 71, 58–68. [Google Scholar] [CrossRef]
- Turskis, Z.; Lazauskas, M.; Zavadskas, E.K. Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods. J. Environ. Eng. Landsc. Manag. 2012, 20, 110–120. [Google Scholar] [CrossRef]
- Yalcinkaya, S. A spatial modeling approach for siting, sizing and economic assessment of centralized biogas plants in organic waste management. J. Clean. Prod. 2020, 255, 120040. [Google Scholar] [CrossRef]
- Yalcinkaya, S.; Kirtiloglu, O.S. Application of a geographic information system-based fuzzy analytic hierarchy process model to locate potential municipal solid waste incineration plant sites: A case study of Izmir Metropolitan Municipality. Waste Manag. Res. 2020, 39, 174–184. [Google Scholar] [CrossRef]
- Jiménez, A.; Ríos-Insua, S.; Mateos, A. A generic multi-attribute analysis system. Comput. Oper. Res. 2006, 33, 1081–1101. [Google Scholar] [CrossRef] [Green Version]
- Dyer, J.S.; Edmunds, T.; Butler, J.; Jia, J. Evaluation of Alternatives for the Disposition of Surplus Weapons-usable Plutonium. In Applied Decision Analysis; Girón, F.J., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 225–234. [Google Scholar]
- Nanda, M.A.; Wijayanto, A.K.; Imantho, H.; Nelwan, L.O.; Budiastra, I.W.; Seminar, K.B. Multi-Criteria Decision Analysis Methods for Siting Energy Generation from Municipal Solid Waste: A Systematic Mini Review. In Proceedings of the 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Malang, Indonesia, 2 October 2021; pp. 1–6. [Google Scholar]
- Kamdar, I.; Ali, S.; Bennui, A.; Techato, K.; Jutidamrongphan, W. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resour. Conserv. Recycl. 2019, 149, 220–235. [Google Scholar] [CrossRef]
- Malinowski, M.; Guzdek, S.; Petryk, A.; Tomaszek, K. A GIS and AHP-based approach to determine potential locations of municipal solid waste collection points in rural areas. J. Water Land Dev. 2021, 94–101. [Google Scholar]
- Artun, O. Determination of the Suitable Areas for The Investment of the Wind Energy Plants (WEP) in Osmaniye Using Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS). Avrupa Bilim Ve Teknol. Derg. 2020, 196–205. [Google Scholar]
- Imantho, H.; Seminar, K.B.; Hermawan, W.; Saptomo, S.K. A Spatial Distribution Empirical Model of Surface Soil Water Content and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications. Information 2022, 13, 493. [Google Scholar] [CrossRef]
- Carter, P.; Johannsen, C. Site-Specific Soil Management; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ali, S.A.; Parvin, F.; Al-Ansari, N.; Pham, Q.B.; Ahmad, A.; Raj, M.S.; Anh, D.T.; Ba, L.H.; Thai, V.N. Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: A case study of Memari Municipality, India. Environ. Sci. Pollut. Res. 2021, 28, 7528–7550. [Google Scholar] [CrossRef] [PubMed]
- Makonyo, M.; Msabi, M.M. Potential landfill sites selection using GIS-based multi-criteria decision analysis in Dodoma capital city, central Tanzania. GeoJournal 2022, 87, 2903–2933. [Google Scholar] [CrossRef]
- Özkan, B.; Sarıçiçek, İ.; Özceylan, E. Evaluation of landfill sites using GIS-based MCDA with hesitant fuzzy linguistic term sets. Environ. Sci. Pollut. Res. 2020, 27, 42908–42932. [Google Scholar] [CrossRef]
- Rame, L.S.; Widiatmaka, W.; Hartono, A.; Firmansyah, I. Multi-criteria decision making for determining landfill location in Malaka Regency, East Nusa Tenggara Province of Indonesia. J. Degrad. Min. Lands Manag. 2022, 9, 3405–3413. [Google Scholar] [CrossRef]
- Bora, G.C.; Nowatzki, J.F.; Roberts, D.C. Energy savings by adopting precision agriculture in rural USA. Energy Sustain. Soc. 2012, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- O’brien, J.A.; Marakas, G.M. Management Information Systems; McGraw-Hill Irwin: New York, NY, USA, 2006; Volume 6. [Google Scholar]
- Vitharana, P.; Jain, H. A knowledge based component/service repository to enhance analysts’ domain knowledge for requirements analysis. Inf. Manag. 2012, 49, 24–35. [Google Scholar] [CrossRef]
- Calkins, H.W. Entity relationship modeling of spatial data for geographic information systems. Int. J. Geogr. Inf. Syst. 1996, 10, 1–18. [Google Scholar]
Region | A Potential Area for Energy Generation in Suitability Class (ha) | |||||
---|---|---|---|---|---|---|
Most Suitable | Suitable | Moderately Suitable | Less Suitable | Not Suitable | Restricted | |
Jakarta | 0 | 104.37 | 1935.43 | 35,810.56 | 25,377.94 | 1062.27 |
Bogor | 3096.87 | 67,205.90 | 106,120.99 | 83,860.91 | 48,761.59 | 455.26 |
Depok | 0 | 0 | 219.66 | 7815.73 | 219.66 | 0 |
Tangerang | 0 | 931.08 | 35,850.04 | 67,037.62 | 33,696.43 | 0.14 |
Bekasi | 0 | 439.93 | 47,072.13 | 48,761.59 | 30,634.92 | 21.25 |
Total (ha) | 3096.87 | 68,681.29 | 191,198.24 | 243,286.41 | 138,690.55 | 1538.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seminar, K.B.; Nelwan, L.O.; Budiastra, I.W.; Sutawijaya, A.; Wijayanto, A.K.; Imantho, H.; Nanda, M.A.; Ahamed, T. Using Precision Agriculture (PA) Approach to Select Suitable Final Disposal Sites for Energy Generation. Information 2023, 14, 8. https://doi.org/10.3390/info14010008
Seminar KB, Nelwan LO, Budiastra IW, Sutawijaya A, Wijayanto AK, Imantho H, Nanda MA, Ahamed T. Using Precision Agriculture (PA) Approach to Select Suitable Final Disposal Sites for Energy Generation. Information. 2023; 14(1):8. https://doi.org/10.3390/info14010008
Chicago/Turabian StyleSeminar, Kudang Boro, Leopold Oscar Nelwan, I Wayan Budiastra, Arya Sutawijaya, Arif Kurnia Wijayanto, Harry Imantho, Muhammad Achirul Nanda, and Tofael Ahamed. 2023. "Using Precision Agriculture (PA) Approach to Select Suitable Final Disposal Sites for Energy Generation" Information 14, no. 1: 8. https://doi.org/10.3390/info14010008
APA StyleSeminar, K. B., Nelwan, L. O., Budiastra, I. W., Sutawijaya, A., Wijayanto, A. K., Imantho, H., Nanda, M. A., & Ahamed, T. (2023). Using Precision Agriculture (PA) Approach to Select Suitable Final Disposal Sites for Energy Generation. Information, 14(1), 8. https://doi.org/10.3390/info14010008