Retail System Scenario Modeling Using Fuzzy Cognitive Maps
Abstract
:1. Introduction
2. Background
3. Methods
3.1. FCM as a Modeling Approach
3.2. System Indicators
3.3. Model Creation
- –
- “Employee loyalty”—“Staff turnover”
- –
- “Employee loyalty”—“Profit”
- –
- “Employee loyalty”—“Customer service level”
- –
- “Customer service level”—“Profit”
- –
- “Customer service level”—“Customer loyalty level”
- –
- “Staff turnover”—“Working conditions”
- –
- “Staff turnover”—“Cross department support”
- –
- “Staff turnover”—“Openness of communication with employees”
- –
- “Staff turnover”—“Profit”
- Publications on the company profit topic [39]:
- –
- “Profit”—“Bank loan”
- –
- “Profit”—“Fixed assets”
- –
- “Profit”—“Working capital”
- –
- “Profit”—“Stock prices”
3.4. Software Implementation
4. Results
4.1. Fuzzy Logic Operator Selection
4.2. Structural Analysis of the FCM
- “Customer service level” (K31), “Company reputation” (K33), “Product quality” (K30), and “Technical level of equipment” (K1) form a cluster of customer security in the market.
- “Working capital” (K26), “Profit” (K19), “Sales revenue ” (K18), “Margin on goods” (K35), “Amount of taxes paid” (K17), “Total costs” (K20), and “Advertising costs” (K23) form a financial cluster.
- “IT infrastructure” (K4), “Integration of systems with suppliers ” (K44) form an IT cluster.
- “Customer income level” (K29), “Price segment of goods” (K36) are combined into a customer cost sensitivity cluster.
- “Production standards” (K2), “Labor productivity” (K7) constitute a production cluster.
4.3. Scenario Modeling with FCM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blondel, V.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C. What are Emergent Properties and How Do They Affect the Engineering of Complex Systems? Reliab. Eng. Syst. Saf. 2006, 91, 1475–1481. [Google Scholar] [CrossRef]
- Breve, F.; Zhao, L. Fuzzy community structure detection by particle competition and cooperation. Soft Comput. 2012, 17, 659–673. [Google Scholar] [CrossRef]
- Watson, H.J. Computer Simulation in Business; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981. [Google Scholar] [CrossRef]
- Kardaras, D.; Karakostas, B. The use of fuzzy cognitive maps to simulate the information systems strategic planning process. Inf. Softw. Technol. 1999, 41, 197–210. [Google Scholar] [CrossRef]
- Groumpos, P.P. Modelling business and management systems using Fuzzy cognitive maps: A critical overview. Int. J. Bus. Technol. 2016, 4, 2. [Google Scholar] [CrossRef]
- Kosko, B. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [Google Scholar] [CrossRef]
- Lee, K.C.; Lee, W.J.; Kwon, O.B.; Han, J.H.; Yu, P.I. Strategic Planning Simulation Based on Fuzzy Cognitive Map Knowledge and Differential Game. Simulation 1998, 71, 316–327. [Google Scholar] [CrossRef]
- Tsadiras, A.K. Using fuzzy cognitive maps for e-commerce strategic planning. In Proceedings of the 9th Panhellenic Conference on Informatics (EPY’2003), Thessaloniki, Greece, 21–23 November 2003; pp. 142–151. [Google Scholar]
- Lee, K.C.; Lee, H.; Lee, N.; Lim, J. An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms. Ind. Mark. Manag. 2013, 42, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.; Ferreira, J.J.; Fernandes, C.; Meidute-Kavaliauskiene, I.; Jalali, M. Enhancing knowledge and strategic planning of bank customer loyalty using fuzzy cognitive maps. Technol. Econ. Dev. Econ. 2017, 23, 860–876. [Google Scholar] [CrossRef] [Green Version]
- Pennacchioli, D.; Coscia, M.; Rinzivillo, S.; Giannotti, F.; Pedreschi, D. The retail market as a complex system. EPJ Data Sci. 2014, 3, 1–27. [Google Scholar] [CrossRef]
- Sadler, R. Integrating expert knowledge in a GIS to optimize siting decisions for small-scale healthy food retail interventions. Int. J. Health Geogr. 2016, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Nagibina, N. Developing the Complex System of Labour Efficiency Management Indices at Food Retails. Manag. Pers. Intellect. Resour. Russ. 2016, 5, 57–60. [Google Scholar] [CrossRef]
- Zhosan, G.; Kyrychenko, N. Development of the complex system of evaluation of the price policy of the retail trade enterprise. Mark. Infrastruct. 2020, 40, 187–192. [Google Scholar] [CrossRef]
- Tian-Foreman, W. Job satisfaction and turnover in the Chinese retail industry. Chin. Manag. Stud. 2009, 3, 356–378. [Google Scholar] [CrossRef]
- Carstea, G.; Corbos, R.A.; Popescu, R.I.; Bunea, O.I. Analysis of the influence of some indicators on the profitability of the FMCG retail market in Romania. In Proceedings of the 11th International Management Conference “The Role of Management in the Economic Paradigm of the XXI Century”, Bucharest, Romania, 2–4 November 2017; pp. 481–492. [Google Scholar]
- Pritchard, M.; Silvestro, R. Applying the service profit chain to analyse retail performance. Int. J. Serv. Ind. Manag. 2005, 16, 337–356. [Google Scholar] [CrossRef]
- Silvestro, R.; Cross, S. Applying the service profit chain in a retail environment: Challenging the “satisfaction mirror”. Int. J. Serv. Ind. Manag. 2000, 11, 244–268. [Google Scholar] [CrossRef]
- Veloso, C.M.; Monte, A.P. Validation of a scale of measurement of service quality, image, customer satisfaction and loyalty in traditional trade. Tour. Manag. Stud. 2019, 15, 27–35. [Google Scholar] [CrossRef]
- Winkler, M.; Mui, Y.; Hunt, S.; Laska, M.; Gittelsohn, J.; Tracy, M. Applications of Complex Systems Models to Improve Retail Food Environments for Population Health: A Scoping Review. Adv. Nutr. 2021, 2021, 138. [Google Scholar] [CrossRef]
- Reinartz, W.; Wiegand, N.; Imschloss, M. The impact of digital transformation on the retailing value chain. Int. J. Res. Mark. 2019, 36, 350–366. [Google Scholar] [CrossRef]
- Ariannezhad, M.; Jullien, S.; Nauts, P.; Fang, M.; Schelter, S.; de Rijke, M. Understanding Multi-Channel Customer Behavior in Retail. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Online, 1–5 November 2021; Association for Computing Machinery: New York, NY, USA, 2021. Chapter 1. pp. 2867–2871. [Google Scholar] [CrossRef]
- Wu, Q. Research on Pricing Strategy of Online and Offline Supply Chain Based on Channel Preference in the Context of New Retail. Complexity 2021, 2021, 5211642. [Google Scholar] [CrossRef]
- Haas, Y. Developing a generic retail business model—A qualitative comparative study. Int. J. Retail Distrib. Manag. 2019, 47, 1029–1056. [Google Scholar] [CrossRef]
- Frankeová, M.; Farana, R.; Formánek, I.; Walek, B. Fuzzy-Expert System for Customer Behavior Prediction. In Proceedings of the Artificial Intelligence and Algorithms in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 122–131. [Google Scholar] [CrossRef]
- Khan, M.S.; Khor, S.W. A Framework for Fuzzy Rule-Based Cognitive Maps. In Proceedings of the PRICAI 2004: Trends in Artificial Intelligence, Auckland, New Zealand, 9–3 August 2004; Zhang, C., Guesgen, H.W., Yeap, W.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 454–463. [Google Scholar] [CrossRef]
- Gabbay, D.M.; Metcalfe, G. Fuzzy logics based on [0, 1)-continuous uninorms. Arch. Math. Log. 2007, 46, 425–449. [Google Scholar] [CrossRef]
- Stylios, C.; Groumpos, P. Modeling Complex Systems Using Fuzzy Cognitive Maps. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2004, 34, 155–162. [Google Scholar] [CrossRef]
- Dawes, J. The Effect of Service Price Increases on Customer Retention: The Moderating Role of Customer Tenure and Relationship Breadth. J. Serv. Res. 2009, 11, 232–245. [Google Scholar] [CrossRef]
- Silov, V. Strategic Decision-Making in a Fuzzy Environment; INPRO-RES: Moscow, Russia, 1995; Volume 228. [Google Scholar]
- Niesink, P.; Poulin, K.; ŠAjna, M. Computing Transitive Closure of Bipolar Weighted Digraphs. Discret. Appl. Math. 2013, 161, 217–243. [Google Scholar] [CrossRef] [Green Version]
- Cox, E.D. Fuzzy Logic for Business and Industry; Charles River Media, Inc.: Newton, MA, USA, 1995. [Google Scholar]
- Büyüközkan, G.; Vardaloğlu, Z. Analyzing of CPFR success factors using fuzzy cognitive maps in retail industry. Expert Syst. Appl. 2012, 39, 10438–10455. [Google Scholar] [CrossRef]
- Camillus, J. Strategy as a Wicked Problem. Harv. Bus. Rev. 2008, 86, 98–101. [Google Scholar]
- Santoro, G.; Fiano, F.; Bertoldi, B.; Ciampi, F. Big data for business management in the retail industry. Manag. Decis. 2018, 57, 1980–1992. [Google Scholar] [CrossRef]
- Martin, W.; Ponder, N.; Lueg, J. Price fairness perceptions and customer loyalty in a retail context. J. Bus. Res. 2009, 62, 588–593. [Google Scholar] [CrossRef]
- Taber, W.; Siegel, M. Estimation of expert credibility weights using FCM. In Proceedings of the IEEE 1st International Conference Neural Networks, San Diego, CA, USA, 21–24 June 1987; Volume 2, pp. 319–326. [Google Scholar]
- Gawlik, D. New York Stock Exchange: S&P 500 Companies Historical Prices with Fundamental Data. 2017. Available online: https://www.kaggle.com/dgawlik/nyse (accessed on 10 February 2022).
- Petukhova, A.; Fachada, N. Retail Fuzzy Cognitive Map Dataset. 2022. Available online: https://doi.org/10.5281/zenodo.6046893 (accessed on 16 February 2022).
- Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Kandasamy, W.V.; Smarandache, F. Fuzzy Relational Maps and Neutrosophic Relational Maps. Available online: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1123&context=math_fsp (accessed on 16 February 2022).
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Sadq, Z.; Nuraddin, S.; Hama, S. Analyzing the Amazon success strategies. J. Process Manag. New Technol. 2018, 6, 65–69. [Google Scholar] [CrossRef]
T-Norm | S-Norm |
---|---|
Minimum | Maximum |
Algebraic product | Algebraic sum |
Hamacher product | Hamacher sum |
Einstein product | Einstein sum |
Drastic product | Drastic sum |
Nilpotent minimum | Nilpotent sum |
Lukasiewicz max | Lukasiewicz min |
Indicator | Formula |
---|---|
Concept’s consonance | |
Concept’s dissonance | |
Concept’s impact on the system | |
Consonance of the i-th concept influence on the system | |
Consonance of the system’s influence on the j-th concept | |
Dissonance of the i-th concept influence on the system | |
Dissonance of the system’s influence on the j-th concept | |
Impact of the i-th concept on the system | |
Impact of the system on the j-th concept |
Subsystems | Concepts | K* |
---|---|---|
Technology | Technical level of equipment | K1 |
Production standards | K2 | |
Speed of adoption of innovative technology | K3 | |
IT infrastructure | K4 | |
Employees | Number of trained staff | K5 |
Lost working time | K6 | |
Labor productivity | K7 | |
Working conditions | K8 | |
Employee loyalty | K9 | |
Staff turnover | K10 | |
Cross department support | K11 | |
Openness of communication with employees | K12 | |
Finance | Market competition level | K13 |
Interest rate on loans | K14 | |
Accounts payable | K15 | |
Bank loan | K16 | |
Amount of taxes paid | K17 | |
Sales revenue | K18 | |
Profit | K19 | |
Total costs | K20 | |
Fixed assets | K21 | |
Rent | K22 | |
Advertising costs | K23 | |
Currency exchange rate | K24 | |
Market share | K25 | |
Working capital | K26 | |
Stock prices | K27 | |
Customers | Customer demand | K28 |
Customer income level | K29 | |
Product quality | K30 | |
Customer service level | K31 | |
Customer loyalty level | K32 | |
Company reputation | K33 | |
Assortment of goods | K34 | |
Margin on goods | K35 | |
Price segment of goods | K36 | |
Share of the internal branded goods | K37 | |
External factors | Political stability | K38 |
Inflation expectations | K39 | |
Suppliers | Supplier’ purchase price | K40 |
Supplier’ purchase terms | K41 | |
Effectiveness of supplier selection | K42 | |
Supplier’ technical readiness | K43 | |
Integration of systems with suppliers | K44 | |
Investments | Domestic investments | K45 |
Capital investments | K46 | |
Foreign investment | K47 |
Concept | Step 0 | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 |
---|---|---|---|---|---|---|
Employee loyalty | 0 | 0.04 | 0.07 | 0.12 | 0.22 | 0.38 |
Staff turnover | 0 | 0 | −0.04 | −0.06 | −0.11 | −0.2 |
Customer demand | 0 | 0.04 | 0.04 | 0.04 | 0.05 | 0.07 |
Product quality | 0.1 | 0.1 | 0.12 | 0.14 | 0.18 | 0.25 |
Customer service level | 0 | 0 | 0.01 | 0.02 | 0.02 | 0.06 |
Customer loyalty level | 0 | 0.07 | 0.07 | 0.09 | 0.16 | 0.27 |
Company reputation | 0 | 0.07 | 0.09 | 0.18 | 0.3 | 0.47 |
Assortment of goods | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 |
Margin on goods | 0 | 0 | 0 | 0 | 0 | 0 |
Profit | 0 | 0 | 0 | 0.15 | 0.08 | 0.16 |
Concept | Step 0 | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 |
---|---|---|---|---|---|---|
Employee loyalty | 0.1 | 0.14 | 0.24 | 0.36 | 0.59 | 0.94 |
Staff turnover | 0 | −0.05 | −0.1 | −0.17 | −0.29 | −0.48 |
Customer demand | 0 | 0.04 | 0 | 0.04 | 0.05 | 0.08 |
Product quality | 0.1 | 0.1 | 0.14 | 0.2 | 0.28 | 0.43 |
Customer service level | 0 | 0.03 | 0.05 | 0.1 | 0.18 | 0.29 |
Customer loyalty level | 0 | 0.07 | 0.11 | 0.18 | 0.35 | 0.6 |
Company reputation | 0 | 0.12 | 0.16 | 0.35 | 0.61 | 0.99 |
Assortment of goods | 0 | 0 | 0 | 0.01 | 0.01 | 0.03 |
Margin on goods | 0 | 0.05 | 0.07 | 0.09 | 0.14 | 0.2 |
Profit | 0 | 0.01 | 0.02 | 0.21 | 0.18 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petukhova, A.; Fachada, N. Retail System Scenario Modeling Using Fuzzy Cognitive Maps. Information 2022, 13, 251. https://doi.org/10.3390/info13050251
Petukhova A, Fachada N. Retail System Scenario Modeling Using Fuzzy Cognitive Maps. Information. 2022; 13(5):251. https://doi.org/10.3390/info13050251
Chicago/Turabian StylePetukhova, Alina, and Nuno Fachada. 2022. "Retail System Scenario Modeling Using Fuzzy Cognitive Maps" Information 13, no. 5: 251. https://doi.org/10.3390/info13050251
APA StylePetukhova, A., & Fachada, N. (2022). Retail System Scenario Modeling Using Fuzzy Cognitive Maps. Information, 13(5), 251. https://doi.org/10.3390/info13050251