Determining Intermediary Closely Related Languages to Find a Mediator for Intertribal Conflict Resolution
Abstract
:1. Introduction
2. Literature Review
2.1. Tribe Diversity and Intertribal Conflict
2.2. Closely Related Languages
2.3. Automated Similarity Judgment Program (ASJP)
2.4. Pathfinding Algorithms
2.4.1. Dijkstra Algorithm
- Finding directions between locations. The Dijkstra algorithm is applied to Google Maps to provide directions and find the shortest path that connects the starting location to the intended location.
- Finding the degrees of separation between people in social networks. For example, when viewing someone’s profile on LinkedIn, it will indicate how many people separate someone in the graph, as well as listing mutual connections. As another example, on Facebook, where when visiting a friend’s profile on Facebook we can see other people’s Facebook accounts that are suggested, where the account is a friend of our friend on Facebook. Facebook will find the possibility for us to also know that person; this is called friends of friends.
- Finding the number of degrees of separation between an actor and Kevin Bacon based on the movies they have appeared in (the Bacon Number). Bacon Number is a Google feature that shows the actor or actress relationship with Kevin Bacon, with the assumption that every actress or actor has been linked to Kevin through other actors or actresses.
2.4.2. Yen’s K Algorithm
3. Materials and Methods
3.1. Data Preparation
3.2. Experiment Design
3.3. Mediator Selection as Optimization Problem
- : Average language similarity between the mediator candidate’s native language and the target languages.
- : Average geographical distance between the mediator candidate’s location and the target languages’ locations.
- : The mediator candidate’s experience or background to support the mediator role.
- : The mediator candidate’s expected salary.
4. Results
4.1. Determining Intermediary Closely Related Languages
4.1.1. Result of Dijkstra Algorithm
4.1.2. Result of Yen’s K Shortest Path Algorithm
4.1.3. Performance Comparison
4.2. Mediator Selection from The Intermediary Languages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASJP | Automated Similarity Judgment Program |
References
- Panggabean, S.R. Conflict and Ethnic Peace in Indonesia [konflik dan Perdamaian Etnis di Indonesia]; Pustaka Alvabet: Tangerang Selatan, Indonesia, 2018. [Google Scholar]
- Noor, A.F.; Sugito, S. Multicultural Education Based in Local Wisdom of Indonesia for Elementary Schools in the 21st Century. J. Int. Soc. Stud. 2019, 9, 94–106. [Google Scholar]
- Eko, B.S.; Putranto, H. Face Negotiation Strategy Based on Local Wisdom and Intercultural Competence to Promote Inter-ethnic Conflict Resolution: Case Study of Balinuraga, Lampung. J. Intercult. Commun. Res. 2021, 50, 506–540. [Google Scholar] [CrossRef]
- Dai, X. The development of interculturality and the management of intercultural conflict. In Conflict Management and Intercultural Communication; Routledge: London, UK, 2017; pp. 85–97. [Google Scholar]
- Weidmann, N.B. Geography as motivation and opportunity: Group concentration and ethnic conflict. J. Confl. Resolut. 2009, 53, 526–543. [Google Scholar] [CrossRef]
- Hernawan, W.; Pienrasmi, H.; Basri, H. The Implementation of Local Wisdom as an Ethnic Conflict Resolution. Opción Rev. Cienc. Humanas Soc. 2019, 21, 951–972. [Google Scholar]
- Dyck, K. Peacemakers in Action: Profiles of Religion in Conflict Resolution. Peace Res. 2007, 39, 150. [Google Scholar]
- Cohen, R. Language and conflict resolution: The limits of English. Int. Stud. Rev. 2001, 3, 25–51. [Google Scholar] [CrossRef]
- Na’im, A.; Syaputra, H. Kewarganegaraan, Suku Bangsa, Agama dan Bahasa Sehari-Hari Penduduk Indonesia Hasil Sensus Penduduk 2010; Badan Pusat Statistik: Jakarta, Indonesia, 2011. [Google Scholar]
- Mulyana, A. Hubungan Etnis Dalam Pendidikan Sejarah di Indonesia. Disajikan. Dalam. In Proceedings of the International Seminar on Ethnics and Education, The Faculty of Education & Institute Research of Ethnicity Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia, 28 March 2008. [Google Scholar]
- Nieke, N. Manajemen dan resolusi konflik dalam masyarakat. J. Ilm. Pendidik. Lingkung. Dan Pembang. 2011, 12, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Sartika, R. Persepsi Mahasiswa Terhadap Konflik Dalam Pembelajaran Mata Kuliah Pendidikan Resolusi Konflik. Edutech 2017, 16, 85–97. [Google Scholar] [CrossRef]
- Bahari, Y. Model komunikasi lintas budaya dalam resolusi konflik berbasis Pranata Adat Melayu dan Madura di Kalimantan Barat. J. Ilmu Komun. 2014, 6, 1–12. [Google Scholar]
- Gooskens, C.; van Heuven, V.J.; Golubović, J.; Schüppert, A.; Swarte, F.; Voigt, S. Mutual intelligibility between closely related languages in Europe. Int. J. Multiling. 2018, 15, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Abraham, R.G.; Chapelle, C.A. The meaning of cloze test scores: An item difficulty perspective. Mod. Lang. J. 1992, 76, 468–479. [Google Scholar] [CrossRef]
- Lehmann, W.P. Historical Linguistics: An Introduction; Routledge: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Schepens, J.; Dijkstra, T.; Grootjen, F.; Van Heuven, W.J. Cross-language distributions of high frequency and phonetically similar cognates. PLoS ONE 2013, 8, e63006. [Google Scholar] [CrossRef]
- Dyen, I.; Kruskal, J.B.; Black, P. An Indoeuropean classification: A lexicostatistical experiment. Trans. Am. Philos. Soc. 1992, 82, iii–iv+1–132. [Google Scholar] [CrossRef]
- Nasution, A.H.; Murakami, Y.; Ishida, T. Constraint-based bilingual lexicon induction for closely related languages. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; pp. 3291–3298. [Google Scholar]
- Nasution, A.H.; Murakami, Y.; Ishida, T. A generalized constraint approach to bilingual dictionary induction for low-resource language families. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (TALLIP) 2017, 17, 9. [Google Scholar] [CrossRef]
- Nasution, A.H.; Murakami, Y.; Ishida, T. Plan optimization for creating bilingual dictionaries of low-resource languages. In Proceedings of the 2017 International Conference on Culture and Computing (Culture and Computing), Kyoto, Japan, 10–12 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 35–41. [Google Scholar]
- Nasution, A.H.; Murakami, Y.; Ishida, T. Designing a collaborative process to create bilingual dictionaries of Indonesian ethnic languages. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018. [Google Scholar]
- Nasution, A.H.; Murakami, Y.; Ishida, T. Plan optimization to bilingual dictionary induction for low-resource language families. Trans. Asian Low-Resour. Lang. Inf. Process. 2021, 20, 29. [Google Scholar] [CrossRef]
- Holman, E.W.; Wichmann, S.; Brown, C.H.; Velupillai, V.; Müller, A.; Bakker, D. Explorations in automated language classification. Folia Linguist. 2008, 42, 1–34. [Google Scholar] [CrossRef]
- Brown, C.H.; Holman, E.W.; Wichmann, S.; Velupillai, V. Automated classification of the world’s languages: A description of the method and preliminary results. Lang. Typol. Univers. 2008, 61, 285–308. [Google Scholar] [CrossRef]
- Müller, A.; Wichmann, S.; Velupillai, V.; Brown, C.H.; Brown, P.; Sauppe, S.; Holman, E.W.; Bakker, D.; List, J.M.; Egorov, D.; et al. ASJP World Language Tree of Lexical Similarity: Version 3 (July 2010). Available online: https://asjp.clld.org/static/WorldLanguageTree-003.pdf (accessed on 17 September 2022).
- Brown, C.H.; Holman, E.W.; Wichmann, S. Sound correspondences in the world’s languages. Language 2013, 89, 4–29. [Google Scholar] [CrossRef]
- Bakker, D.; Müller, A.; Velupillai, V.; Wichmann, S.; Brown, C.H.; Brown, P.; Egorov, D.; Mailhammer, R.; Grant, A.; Holman, E.W. Adding typology to lexicostatistics: A combined approach to language classification. Linguist. Typol. 2009, 13, 161–189. [Google Scholar] [CrossRef]
- Needham, M.; Hodler, A.E. Graph Algorithms: Practical Examples in Apache Spark and Neo4j; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Selim, H.; Zhan, J. Towards shortest path identification on large networks. J. Big Data 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Shi, H. A*-based pathfinding in modern computer games. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 125–130. [Google Scholar]
- Magzhan, K.; Jani, H.M. A review and evaluations of shortest path algorithms. Int. J. Sci. Technol. Res. 2013, 2, 99–104. [Google Scholar]
- Nasution, A.H.; Murakami, Y.; Ishida, T. Generating similarity cluster of Indonesian languages with semi-supervised clustering. Int. J. Electr. Comput. Eng. 2019, 9, 531–538. [Google Scholar] [CrossRef]
Step | Description |
---|---|
1 | Set n to be the length of s. Set m to be the length of t. If n = 0, return m and exit. If m = 0, return n and exit. Construct a matrix containing 0..m rows and 0..n columns. |
2 | Initialize the first row to 0..n. Initialize the first column to 0..m. |
3 | Examine each character of s (i from 1 to n). |
4 | Examine each character of t (j from 1 to m). |
5 | If s[i] equals t[j], the cost is 0. If s[i] does not equal t[j], the cost is 1. |
6 | Set cell d[i,j] of the matrix equal to the minimum of:
|
7 | After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m]. |
No. | Language | No. | Language | No. | Language |
---|---|---|---|---|---|
1 | Abung Sukanda Lampung Nyo | 41 | Komering | 81 | Pitulua Bajau |
2 | Aceh | 42 | Konjo | 82 | Pubian Lampung Api |
3 | Adumanis Ulu Komering | 43 | Kota Agung Lampung Api | 83 | Ramau Lampung Api |
4 | Ambonese Malay | 44 | Krui Lampung Api | 84 | Rejang |
5 | Anaiwoi Bajau | 45 | Lakaramba Bajau | 85 | Sadam |
6 | Bajoe Bajau | 46 | Lakoena Bajau | 86 | Salako Badamea |
7 | Bali | 47 | Lamaholot Ile Mandiri | 87 | Samihim |
8 | Banggai | 48 | Lampung | 88 | Sangir |
9 | Banjarese Malay | 49 | Lampung Nyo Ambung Kotabumi | 89 | Sasak |
10 | Baree | 50 | Lampung Nyo Melinting | 90 | Savu |
11 | Basemah | 51 | Langgara Laut Bajau | 91 | Selayar |
12 | Batak Angkola | 52 | Lapulu Bajau | 92 | Sika |
13 | Batak Mandailing | 53 | Lauru Bajau | 93 | Sindue Tawaili |
14 | Belalau Lampung Api | 54 | Lemo Bajau | 94 | Soppeng Buginese |
15 | Betawi | 55 | Lewa Kambera | 95 | Southern Kambera |
16 | Bima | 56 | Lio | 96 | Sukau Lampung Api |
17 | Boepinang Bajau | 57 | Lom | 97 | Sumbawa |
18 | Buginese | 58 | Luwuk Bajau | 98 | Sundanese |
19 | Coastal Konjo | 59 | Madurese | 99 | Sungkai Lampung Api |
20 | Daya Lampung Api | 60 | Makasar | 100 | Tae |
21 | Delang | 61 | Malang | 101 | Talang Padang Lampung Api |
22 | Ende | 62 | Malay | 102 | Tamuan |
23 | Gayo | 63 | Mambae | 103 | Tara |
24 | Gorontalo | 64 | Mandar | 104 | Tetun |
25 | Ilir Komering | 65 | Manggarai | 105 | Toba Batak |
26 | Indonesian | 66 | Menggala Tulang Bawang Lampung | 106 | Tolaki |
27 | Indonesian Bajau | 67 | Minangkabau | 107 | Tolaki Asera |
28 | Jabung Lampung Api | 68 | Mongondow | 108 | Tolaki Konawe |
29 | Jambi Malay | 69 | Moramo ajau | 109 | Tolaki Laiwui |
30 | Kadatua | 70 | Muna | 110 | Tolaki Mengkongga |
31 | Kaleroang Bajau | 71 | Ngaju Baamang | 111 | Tolaki Wiwirano |
32 | Kalianda Lampung Api | 72 | Ngaju Oloh Mangtangai | 112 | Tontemboan |
33 | Kambera | 73 | Ngaju Oloh Mangtangani | 113 | Tukang Besi Northern |
34 | Kapuas Kahayan | 74 | Ngaju Pulopetak | 114 | Tukang Besi Sothern |
35 | Karo Batak | 75 | Nias Northern | 115 | Uab Meto |
36 | Katingan | 76 | Ogan | 116 | Umbu Ratu Nggai Kambera |
37 | Kayu Agung Asli Komering | 77 | Old Or Middle Javanese | 117 | Way Kanan Lampung Api |
38 | Kayuadi Bajau | 78 | Padei Laut Bajau | 118 | Way Lima Lampung Api |
39 | Kerinci | 79 | Palembang Malay | 119 | Yogyakarta |
40 | Kolo Bawah Bajau | 80 | Perjaya Ulu Komering |
Maximum Distance | Language Pair | Intermediary Languages | Cumulative Cost |
---|---|---|---|
61 | BALI -BUGINESE | BALI | 0.0 |
PALEMBANG MALAY | 60.9 | ||
EMBALOH | 114.37 | ||
BUGINESE | 165.77 | ||
60 | AMBONESE MALAY -KARO BATAK | AMBONESE MALAY | 0.0 |
TERNATE PASAR | 14.77 | ||
KARO BATAK | 72.94 | ||
63 | YOGYAKARTA -MANDAR | YOGYAKARTA | 0.0 |
PALEMBANG MALAY | 62.03 | ||
MAMUJU | 123.30 | ||
MANDAR | 147.69 |
Route | Intermediary Languages | Total Cost |
---|---|---|
1 | PALEMBANG MALAY-REMUN-BOTTENG | 196.10 |
2 | PALEMBANG MALAY-TERNATE PASAR-BOTTENG | 197.08 |
3 | PALEMBANG MALAY-TAMUAN-BOTTENG | 205.79 |
4 | PALEMBANG MALAY-TERNATE PASAR-SANGIL | 210.25 |
Maximum Distance | Language Pair | Intermediary Languages | Total Cost |
---|---|---|---|
61 | BALI-BUGINESE | PALEMBANG MALAY -REMUN -BOTTENG | 196.10 |
60 | AMBONESE MALAY -KARO BATAK | TERNATE PASAR | 72.94 |
63 | YOGYAKARTA -MANDAR | PALEMBANG MALAY -MAMUJU | 147.69 |
Language | Coordinates | Location |
---|---|---|
BALI | 8°20′ S, 115°15′ E | Buahan Kaja, Payangan, Kabupaten Gianyar, Bali |
PALEMBANG MALAY | 2°58′35.9″ S, 104°46′30.8″ E | Palembang, Lawang Kidul, Kec. Ilir Tim. II, Kota Palembang, Sumatera Selatan |
EMBALOH | 1°00′00.0″ N 112°00′00.0″ E | Pulau Majang, Badau, Kabupaten Kapuas Hulu, Kalimantan Barat |
BUGINESE | 4°00′00.0″ S 120°00′00.0″ E | Danau Buaya, Danau Tempe, Kabupaten Wajo, Sulawesi Selatan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasution, A.H.; Fitri, S.E.; Saian, R.; Monika, W.; Badruddin, N. Determining Intermediary Closely Related Languages to Find a Mediator for Intertribal Conflict Resolution. Information 2022, 13, 557. https://doi.org/10.3390/info13120557
Nasution AH, Fitri SE, Saian R, Monika W, Badruddin N. Determining Intermediary Closely Related Languages to Find a Mediator for Intertribal Conflict Resolution. Information. 2022; 13(12):557. https://doi.org/10.3390/info13120557
Chicago/Turabian StyleNasution, Arbi Haza, Shella Eldwina Fitri, Rizauddin Saian, Winda Monika, and Nasreen Badruddin. 2022. "Determining Intermediary Closely Related Languages to Find a Mediator for Intertribal Conflict Resolution" Information 13, no. 12: 557. https://doi.org/10.3390/info13120557
APA StyleNasution, A. H., Fitri, S. E., Saian, R., Monika, W., & Badruddin, N. (2022). Determining Intermediary Closely Related Languages to Find a Mediator for Intertribal Conflict Resolution. Information, 13(12), 557. https://doi.org/10.3390/info13120557