Model to Optimize the Management of Strategic Projects Using Genetic Algorithms in a Public Organization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. IT Enterprise Architecture
2.1.2. Project Portfolio Optimization
2.1.3. Multi-Objective Optimization Problems
2.1.4. Criteria Used for Multi-Objective Optimization
2.1.5. Multi-Objective Algorithm Metrics
2.1.6. Criteria for Classifying and Prioritizing Cybersecurity Projects
2.2. Methods
2.2.1. First Phase
2.2.2. Second Phase
2.2.3. Third Phase
2.2.4. Fourth Phase
Algorithm 1 NSGA-II |
1. Randomly generate the initial population 2. For counter from 1 to (number of generations defined) 3. Assess individuals for all target values 4. Non-dominated classification based on Pareto dominance 5. Generates non-dominated front sets 6. Selection by Tournament 7. Crossing 8. Mutation 9. Create the next generation of individuals 10. End For |
2.2.5. Fifth Phase
2.2.6. Sixth Phase
3. Results
3.1. Mathematical Optimization Model
3.1.1. Goal Optimization Model
3.1.2. Simplified Cost-Benefit Optimization Model, for the Management of Planned Strategic Projects
3.2. Genetic Algorithm Applied to the Optimization Model
3.3. Experiment and Analysis
3.4. Variable Correlation Analysis
4. Discussion
5. Future Work and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gartner. Gartner Prevé que el Gasto Mundial en TI Alcanzará los 4,4 Billones de Dólares en 2022. Gartner, Inc. 2022. Available online: https://www.gartner.com/en/newsroom/press-releases/2022-04-06-gartner-forecasts-worldwide-it-spending-to-reach-4-point-four-trillion-in-2022#:~:text=WorldwideITspendingisprojected,researchvicepresidentatGartner (accessed on 22 May 2022).
- Check-Point-Research. Check Point Software’s 2022 Security Report: Global Cyber Pandemic’s Magnitude Revealed. 2022. Available online: https://pages.checkpoint.com/cyber-security-report-2022.html (accessed on 22 May 2022).
- Sönmez, F. A Conceptual Model for a Metric Based Framework for the Monitoring of Information Security Tasks’ Efficiency. Procedia Comput. Sci. 2019, 160, 181–188. [Google Scholar] [CrossRef]
- Masilela, L.; Nel, D. The role of data and information security governance in protecting public sector data and information assets in national government in South Africa. Afr. Public Serv. Deliv. Perform. Rev. 2021, 9, 10. [Google Scholar] [CrossRef]
- Schatz, D.; Bashroush, R. Economic valuation for information security investment: A systematic literature review. Inf. Syst. Front. 2016, 19, 1205–1228. [Google Scholar] [CrossRef] [Green Version]
- Kirenberg, A.; Medvedev, A.; Prokopenko, E. A mathematical model of information security for a mining company. E3S Web Conf. 2020, 174, 04012. [Google Scholar] [CrossRef]
- Arora, A.; Hall, D.; Piato, C.; Ramsey, D.; Telang, R. Measuring the risk-based value of IT security solutions. IT Prof. 2004, 6, 35–42. [Google Scholar] [CrossRef]
- Hashemi, S.M.; He, J.; Basabi, A.E. Multi-objective Optimization for Computer Security and Privacy. Int. J. Netw. Secur. 2017, 19, 394–405. [Google Scholar]
- Zelenkov, Y. Critical regular components of IT strategy: Decision making model and efficiency measurement. J. Manag. Anal. 2015, 2, 95–110. [Google Scholar] [CrossRef]
- ISO/IEC/27004:2016; Information Technology–Security Techniques–Information Security Management–Monitoring, Measurement, Analysis and Evaluation. International Organization for Standardization (ISO): Ginebra, Switzerland, 2016.
- Klakegg, O.J. Project delivery models—Situational or fixed design? CSIT 2017, 2, 202–206. [Google Scholar] [CrossRef]
- Bushuyev, S.; Gaydukova, N.; Bushuyeva, N.; Achkasov, I. Evaluation of the investment projects portfolio efficiency. In Proceedings of the 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 22–25 September 2021. [Google Scholar] [CrossRef]
- Ostakhov, V.; Artykulna, N.; Morozov, V. Analysis of models for IT projects prioritization in telecommunication company portfolio. In Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Slavske, Ukraine, 20–24 February 2018; pp. 245–250. [Google Scholar] [CrossRef]
- Ranjbar, M.; Nasiri, M.M.; Torabi, S.A. Multi-mode project portfolio selection and scheduling in a build-operate-transfer environment. Expert Syst. Appl. 2021, 189, 116134. [Google Scholar] [CrossRef]
- Valverde-Alulema, F.; Llorens-Largo, F. Rubric for Evaluating the Alignment of the IT Project Portfolio with IT Governance in Universities. ACM SIGMIS Database Database Adv. Inf. Syst. 2021, 52, 56–76. [Google Scholar] [CrossRef]
- Saiya, A.A.; Arman, A.A. Indonesian Enterprise Architecture Framework: A Platform for Integrated and Connected Government. In Proceedings of the 2018 International Conference on ICT for Smart Society (ICISS), Semarang, Indonesia, 10–11 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Giron, C.L. Enterprise Architecture Model oriented to Architecture, Engineering and Construction Industry: Integration of Geospatial Concepts in a Specific Framework. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 24–27 June 2020. [Google Scholar] [CrossRef]
- Pinheiro, C.R.; Guerreiro, S.; Mamede, H.S. Automation of Enterprise Architecture Discovery based on Event Mining from API Gateway logs: State of the Art. In Proceedings of the 2021 IEEE 23rd Conference on Business Informatics (CBI), Bolzano, Italy, 1–3 September 2021; Volume 2, pp. 117–124. [Google Scholar] [CrossRef]
- Proenca, D.; Borbinha, J. Enterprise Architecture: A Maturity Model Based on TOGAF ADM. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, Greece, 24–27 July 2017. [Google Scholar] [CrossRef]
- Makovhololo, M.L. Effects of GWEA Implementation on ICT Standardisation Across SA Government Departments. In Proceedings of the 2018 Open Innovations Conference (OI), Johannesburg, South Africa, 3–5 October 2018; pp. 339–345. [Google Scholar] [CrossRef]
- Nugroho, M.A.; Jusoh, R.; Salleh, N.A.M. The Role of Alignment between IS Strategy and Social Capital on the IS Capability and Business Performance Relationship: A Cross-Sectional Survey. IEEE Access 2020, 8, 152760–152771. [Google Scholar] [CrossRef]
- Ntsoane, M.P.; Jokonya, O. Impact of Application Development in Managerial Skills, Knowledge and Enterprise Architecture amongst SMEs in Western Cape. In Proceedings of the 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Vanderbijlpark, South Africa, 21–22 November 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Almutairi, A.; Naeem, M.A.; Weber, G. Assessing User Satisfaction of Current Enterprise Systems and Their Adaptability from the Perspective of Top Management. IEEE Access 2021, 9, 153442–153455. [Google Scholar] [CrossRef]
- Sousa, P.; Carvalho, M. Dynamic Organization’s Representation. In Linking Project Management with Enterprise Architecture. In Proceedings of the 2018 IEEE 20th Conference on Business Informatics (CBI), Vienna, Austria, 11–14 July 2018. [Google Scholar] [CrossRef]
- Reis, A.C.B.; de Moraes, G.M.; de Oliveira, W.S.; Júnior, E.S.; Monteiro, S.B.S. Modelo para priorização de execução de projetos de TI em uma instituição financeira. Rev. Ibérica Sist. Tecnol. Inf. 2020, E27, 319–332. [Google Scholar]
- Tselios, D.; Ipsilandis, P. Telecommunication projects portfolio scheduling using the IFM approach. In Proceedings of the 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Mylnikov, L. Efficiency management of discrete production systems under the dynamics of project portfolio. Comput. Ind. Eng. 2021, 163, 107807. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Heidary-Dahooie, J.; Akbari, P.; Qorbani, A. A project prioritization approach considering uncertainty, reliability, criteria prioritization, and robustness. Decis. Support Syst. 2022, 156, 113731. [Google Scholar] [CrossRef]
- Harrison, K.R.; Garanovich, I.L.; Weir, T.; Boswell, S.G.; Elsayed, S.M.; Sarker, R.A. Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling: An Introduction; Springer: Cham, Germany, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Saiz, M.; Lostumbo, M.A.; Juan, A.A.; Lopez-Lopez, D. A clustering-based review on project portfolio optimization methods. Int. Trans. Oper. Res. 2021, 29, 172–199. [Google Scholar] [CrossRef]
- Liesiö, J.; Salo, A.; Keisler, J.M.; Morton, A. Portfolio decision analysis: Recent developments and future prospects. Eur. J. Oper. Res. 2020, 293, 811–825. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Abbasi, M.; Deng, X. A novel project portfolio selection framework towards organizational resilience: Robust Ordinal Priority Approach. Expert Syst. Appl. 2021, 188, 116067. [Google Scholar] [CrossRef]
- Mohagheghi, V.; Mousavi, S.M. A new multi-period optimization model for resilient-sustainable project portfolio evaluation under interval-valued Pythagorean fuzzy sets with a case study. Int. J. Mach. Learn. Cybern. 2021, 12, 3541–3560. [Google Scholar] [CrossRef]
- Kolisch, R.; Fliedner, T. A Decision Support System for Planning Portfolios of Supply Chain Improvement Projects in the Semiconductor Industry. In Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling; Springer Science and Business Media Deutschland GmbH: Cham, Germany, 2022; Volume 26, pp. 193–212. [Google Scholar] [CrossRef]
- Calbert, G.; Weir, T.; Garanovich, I.L. Kuhn, C.C.N. A Temporal Knapsack Approach to Defence Portfolio Selection. In Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling; Springer Science and Business Media Deutschland GmbH: Cham, Germany, 2022; pp. 159–191. [Google Scholar]
- De Almeida, J.A.; Vetschera, R. Bounds in Tree-Based Approaches to Generate Project Portfolios in the Presence of Interactions. Int. J. Decis. Support Syst. Technol. 2021, 13, 50–70. [Google Scholar]
- Martins, C.L.; Zaraté, P.; de Almeida, A.T.; de Almeida, J.A.; Morais, D.C. Web-Based DSS for Resource Allocation in Higher Education. Int. J. Decis. Support Syst. Technol. 2021, 13, 71–93. [Google Scholar] [CrossRef]
- Mussoi, F.L.R.; Teive, R.C.G. An integrated multicriteria decision-making approach for distribution system expansion planning. Int. J. Intell. Syst. 2021, 36, 4962–4989. [Google Scholar] [CrossRef]
- Fernández, E.; Rangel-Valdez, N.; Cruz-Reyes, L.; Gomez-Santillan, C. A New Approach to Group Multi-Objective Optimization under Imperfect Information and Its Application to Project Portfolio Optimization. Appl. Sci. 2021, 11, 4575. [Google Scholar] [CrossRef]
- Harrison, K.R.; Elsayed, S.M.; Garanovich, I.L.; Weir, T.; Boswell, S.G.; Sarker, R.A. A. A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options. In Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling; Springer Science and Business Media Deutschland GmbH: Cham, Germany, 2022; pp. 89–123. [Google Scholar] [CrossRef]
- Fernández, E.; Solares, E.; Coello, C.A.C.; De-León-Gómez, V. An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It. In Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling; Springer Science and Business Media Deutschland GmbH: Cham, Germany, 2022; pp. 65–88. [Google Scholar] [CrossRef]
- Sarker, R.A.; Harrison, K.R.; Elsayed, S.M. Evolutionary Approaches for Project Portfolio Optimization: An Overview. In Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling; Springer Science and Business Media Deutschland GmbH: Cham, Germany, 2022; pp. 9–35. [Google Scholar] [CrossRef]
- Balderas, F.; Fernandez, E.; Gomez-Santillan, C.; Rangel-Valdez, N.; Cruz, L. An Interval-Based Approach for Evolutionary Multi-Objective Optimization of Project Portfolios. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1317–1358. [Google Scholar] [CrossRef]
- Zolfaghari, S.; Mousavi, S.M. A novel mathematical programming model for multi-mode project portfolio selection and scheduling with flexible resources and due dates under interval-valued fuzzy random uncertainty. Expert Syst. Appl. 2021, 182, 115207. [Google Scholar] [CrossRef]
- Rivera, G.; Florencia, R.; Guerrero, M.; Porras, R.; Sánchez-Solís, J.P. Online multi-criteria portfolio analysis through compromise programming models built on the underlying principles of fuzzy outranking. Inf. Sci. 2021, 580, 734–755. [Google Scholar] [CrossRef]
- Bai, L.; Han, X.; Wang, H.; Zhang, K.; Sun, Y. A method of network robustness under strategic goals for project portfolio selection. Comput. Ind. Eng. 2021, 161, 107658. [Google Scholar] [CrossRef]
- Khatun, M.T.; Hiekata, K.; Takahashi, Y.; Okada, I. Dynamic Modeling of Resource Allocation for Project Management in Multi-Project Environment. In Transdisciplinary Engineering for Resilience: Responding to System Disruptions, Proceedings of the 28th ISTE International Conference on Transdisciplinary Engineering, Online, 5–9 July 2021; IOS Press: Amsterdam, The Netherlands, 2021; pp. 223–232. [Google Scholar] [CrossRef]
- Wu, L.-H.; Wu, L.; Shi, J.; Chou, Y.-T. Project Portfolio Selection Considering Uncertainty: Stochastic Dominance-Based Fuzzy Ranking. Int. J. Fuzzy Syst. 2021, 23, 2048–2066. [Google Scholar] [CrossRef]
- Marchinares, A.H.; Rodriguez, C.R. Online Solution Based on Machine Learning for IT Project Management in Software Factory Companies. In Proceedings of the 2021 13th International Conference on Computational Intelligence and Communication Networks (CICN), Lima, Peru, 22–23 September 2021; pp. 150–154. [Google Scholar]
- Harrison, K.R.; Elsayed, S.; Sarker, R.A.; Garanovich, I.L.; Weir, T.; Boswell, S.G. Project portfolio selection with defense capability options. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021. [Google Scholar] [CrossRef]
- Mokhtari, G.; Imamzadeh, E.S.M. Balancing the Portfolio of Urban and Public Projects with Distance-Dependent Coverage Facilities. Sci. Iran. 2021, 28, 2374–2385. [Google Scholar] [CrossRef]
- Mavrotas, G.; Makryvelios, E. Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece. Eur. J. Oper. Res. 2020, 291, 794–806. [Google Scholar] [CrossRef]
- Hesarsorkh, A.H.; Ashayeri, J.; Naeini, A.B. Pharmaceutical R&D project portfolio selection and scheduling under uncertainty: A robust possibilistic optimization approach. Comput. Ind. Eng. 2021, 155, 107114. [Google Scholar] [CrossRef]
- Abdalla, M.H.; Karabatak, M. To Review and Compare Evolutionary Algorithms in Optimization of Distributed Database Query. In Proceedings of the 2020 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut, Lebanon, 1–2 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, R.; Ji, W. Computational Intelligence for Information Security: A Survey. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 616–629. [Google Scholar] [CrossRef]
- Yang, X.; Zou, J.; Yang, S.; Zheng, J.; Liu, Y. A Fuzzy Decision Variables Framework for Large-scale Multiobjective Optimization. IEEE Trans. Evol. Comput. 2021, 1. [Google Scholar] [CrossRef]
- Katsupeev, A.A.; Shcherbakova, E.A.; Vorobyev, S.P. Comparison of evolutionary algorithms used to solve the optimization problem of information security of distributed systems. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russian, 19–20 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Ahrari, A.; Elsayed, S.; Sarker, R.; Essam, D.; Coello, C.A.C. Weighted pointwise prediction method for dynamic multiobjective optimization. Inf. Sci. 2020, 546, 349–367. [Google Scholar] [CrossRef]
- Li, S.; Bi, F.; Chen, W.; Miao, X.; Liu, J.; Tang, C. An Improved Information Security Risk Assessments Method for Cyber-Physical-Social Computing and Networking. IEEE Access 2018, 6, 10311–10319. [Google Scholar] [CrossRef]
- Lakhno, V.; Akhmetov, B.; Adilzhanova, S.; Blozva, A.; Svitlana, R.; Dmytro, R. The Use of a Genetic Algorithm in the Problem of Distribution of Information Security Organizational and Financial Resources. In Proceedings of the 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 25–27 November 2020; pp. 251–254. [Google Scholar] [CrossRef]
- Song, Y.; Shen, Y.; Zhang, G.; Hu, Y. The information security risk assessment model based on GA-BP. In Proceedings of the 2016 7th IEEE international conference on software engineering and service science (ICSESS), Beijing, China, 26–28 August 2016; pp. 119–122. [Google Scholar] [CrossRef]
- Alioui, Y.; Acar, R. An evaluation of a constrained multi-objective genetic algorithm. J. Sci. Perspect. 2020, 4, 137–146. [Google Scholar] [CrossRef]
- Kebriyaii, O.; Heidari, A.; Khalilzadeh, M.; Antucheviciene, J.; Pavlovskis, M. Application of Three Metaheuristic Algorithms to Time-Cost-Quality Trade-Off Project Scheduling Problem for Construction Projects Considering Time Value of Money. Symmetry 2021, 13, 2402. [Google Scholar] [CrossRef]
- Abouhawwash, M.; Deb, K. Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics. J. Heurist. 2021, 27, 575–614. [Google Scholar] [CrossRef]
- Algarni, M.; Alazwari, M.A.; Safaei, M.R. Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling. Mathematics 2021, 9, 3235. [Google Scholar] [CrossRef]
- Awad, M.; Abouhawwash, M.; Agiza, H.N. On NSGA-II and NSGA-III in Portfolio Management. Intell. Autom. Soft Comput. 2022, 32, 1893–1904. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, N.; Li, M. Solving Many-Objective Optimization Problems by a Pareto-Based Evolutionary Algorithm with Preprocessing and a Penalty Mechanism. IEEE Trans. Cybern. 2020, 51, 5585–5594. [Google Scholar] [CrossRef] [PubMed]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Chen, J.; Du, T.; Xiao, G. A multi-objective optimization for resource allocation of emergent demands in cloud computing. J. Cloud Comput. Adv. Syst. Appl. 2021, 10, 20. [Google Scholar] [CrossRef]
- Abido, M.A.; Elazouni, A. Modified multi-objective evolutionary programming algorithm for solving project scheduling problems. Expert Syst. Appl. 2021, 183, 115338. [Google Scholar] [CrossRef]
- Atta, S.; Mahapatra, P.R.S.; Mukhopadhyay, A. A multi-objective formulation of maximal covering location problem with customers’ preferences: Exploring Pareto optimality-based solutions. Expert Syst. Appl. 2021, 186, 115830. [Google Scholar] [CrossRef]
- Akhmetov, B.; Lakhno, V.; Akhmetov, B.; Myakuhin, Y.; Adranova, A.; Kydyralina, L. Models and Algorithms of Vector Optimization in Selecting Security Measures for Higher Education Institution’s Information Learning Environment. In Intelligent Systems in Cybernetics and Automation Control Theory; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–142. [Google Scholar] [CrossRef]
- Bojanc, R.; Jerman-Blažič, B. Quantitative Model for Economic Analyses of Information Security Investment in an Enterprise Information System. Organizacija 2012, 45, 276–288. [Google Scholar] [CrossRef]
- Klyaus, T.K.; Gatchin, Y.A. Mathematical Model for Information Security System Effectiveness Evaluation against Advanced Persistent Threat Attacks. In Proceedings of the 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint Petersburg, Russia, 1–5 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ramalingam, D.; Arun, S.; Anbazhagan, N. A Novel Approach for Optimizing Governance, Risk management and Compliance for Enterprise Information security using DEMATEL and FoM. Procedia Comput. Sci. 2018, 134, 365–370. [Google Scholar] [CrossRef]
- Zeng, W.; Koutny, M. Modelling and analysis of corporate efficiency and productivity loss associated with enterprise information security technologies. J. Inf. Secur. Appl. 2019, 49, 102385. [Google Scholar] [CrossRef]
- Bai, X.; Gopal, R.; Nunez, M.; Zhdanov, D. A decision methodology for managing operational efficiency and information disclosure risk in healthcare processes. Decis. Support Syst. 2014, 57, 406–416. [Google Scholar] [CrossRef]
- Zegzhda, P.D.; Anisimov, V.G.; Suprun, A.F.; Saurenko, T.N.; Los’, V.P. A Model of Optimal Complexification of Measures Providing Information Security. Autom. Control Comput. Sci. 2020, 54, 930–936. [Google Scholar] [CrossRef]
- Stepanov, L.V.; Koltsov, A.S.; Parinov, A.V.; Dubrovin, A.S. Mathematical modeling method based on genetic algorithm and its applications. J. Phys. Conf. Ser. 2019, 1203, 012082. [Google Scholar] [CrossRef]
- Izurieta, R.R.; Morales, L.J.C.; Toapanta, S.M.T.; Gallegos, L.E.M.; Trejo, J.A.O. Analysis of the Information Security of Public Organizations in Ecuador. In Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2021; pp. 823–829. [Google Scholar] [CrossRef]
- Audet, C.; Bigeon, J.; Cartier, D.; Le Digabel, S.; Salomon, L. Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 2020, 292, 397–422. [Google Scholar] [CrossRef]
- Riquelme, N.; Von Lucken, C.; Baran, B. Performance metrics in multi-objective optimization. In Proceedings of the 2015 Latin American computing conference (CLEI), Arequipa, Peru, 19–23 October 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Okabe, T.; Jin, Y.; Sendhoff, B. A critical survey of performance indices for multi-objective optimisation. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, 8–12 December 2003. [Google Scholar] [CrossRef] [Green Version]
- Abedi, M.; Chiong, R.; Noman, N.; Zhang, R. A multi-population, multi-objective memetic algorithm for energy-efficient job-shop scheduling with deteriorating machines. Expert Syst. Appl. 2020, 157, 113348. [Google Scholar] [CrossRef]
- Amine, K. Multiobjective Simulated Annealing: Principles and Algorithm Variants. Adv. Oper. Res. 2019, 2019, 8134674. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Evol. Comput. 2018, 26, 411–440. [Google Scholar] [CrossRef] [PubMed]
- Nartey, C.; Tchao, E.T.; Gadze, J.D.; Yeboah-Akowuah, B.; Nunoo-Mensah, H.; Welte, D.; Sikora, A. Blockchain-IoT peer device storage optimization using an advanced time-variant multi-objective particle swarm optimization algorithm. EURASIP J. Wirel. Commun. Netw. 2022, 2022, 5. [Google Scholar] [CrossRef]
- Biswas, S.; Acharyya, S. Multi-objective Simulated Annealing Variants to Infer Gene Regulatory Network: A Comparative Study. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 2612–2623. [Google Scholar] [CrossRef]
- INCIBE. 6 Criterios para Categorizar y Priorizar tus Proyectos de Ciberseguridad en la Empresa. Instituto Nacional de Ciberseguridad. 2016. Available online: https://www.incibe.es/protege-tu-empresa/blog/criterios-clasificar-y-priorizar-proyectos-ciberseguridad-en-empresa (accessed on 29 July 2022).
- Ostakhov, V.; Morozov, V. Models and Methods of IT and Infocommunications Portfolio Management Using the System of Metrics and KPIs. In Proceedings of the 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 8–11 October 2019; pp. 161–164. [Google Scholar] [CrossRef]
- Van Veldhuizen, D.A.; Lamont, G.B. Genetic algorithms, building blocks, and multiobjective optimization. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference, Orlando, FL, USA, 18 July 1999; Workshop Program. pp. 125–126. [Google Scholar]
- Kumar, G.P.; Jena, P. Pearson’s Correlation Coefficient for Islanding Detection Using Micro-PMU Measurements. IEEE Syst. J. 2020, 15, 5078–5089. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, J.; Liu, S.; Li, D. Differentially Private Decision Tree Based on Pearson’s Correlation Coefficient. In Proceedings of the 2021 11th International Conference on Information Science and Technology (ICIST), Chengdu, China, 21–23 May 2021; pp. 77–86. [Google Scholar] [CrossRef]
- Solis, E.B.; Neto, A.M.; Huallpa, B.N. Pearson’s Correlation Coefficient for Discarding Redundant Information: Velodyne Lidar Data Analysis. In Proceedings of the 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Brazil, 29–31 October 2015; pp. 116–119. [Google Scholar] [CrossRef]
- Sukono; Hidayat, Y.; Lesmana, E.; Putra, A.S.; Napitupulu, H.; Supian, S. Portfolio optimization by using linear programing models based on genetic algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2018, 300, 012001. [Google Scholar] [CrossRef]
- Sadeghi, A.; Daneshvar, A.; Zaj, M.M. Combined ensemble multi-class SVM and fuzzy NSGA-II for trend forecasting and trading in Forex markets. Expert Syst. Appl. 2021, 185, 115566. [Google Scholar] [CrossRef]
Criteria | Classification Examples | Reference |
---|---|---|
Project Type | Organizational, technical and regulatory | [13,25,89] |
Cost | Low, medium and high | [13,89] |
Origin of non-compliance | Security incident, risk analysis, Audit and security assessment | [87] |
Execution time | Short, medium and long | [13,25,89] |
Means | Own and external | [13,25,89] |
Gain/effort ratio | Valuation according to the project, complexity, etc. | [25,89] |
Risk | Risk assessment, probability of success, technical uncertainty, etc. | [12,13,53] |
Benefit | Financial performance (VAN, IRR, CIR, etc.). technical performance, etc. | [13,26,90] |
Technological contribution | According to Gartner | [13] |
Coverage | Number of customers affected | [25] |
Compromised areas | Number of areas involved internal or external to the organization | [25] |
No. | Cost (USD) | %CMSI | No. | Cost (USD) | %CMSI | No. | Cost (USD) | %CMSI |
---|---|---|---|---|---|---|---|---|
1 | 6231.00 | 5.16 | 11 | 4169.00 | 4.41 | 21 | 19,089.00 | 4.91 |
2 | 14,848.00 | 0.94 | 12 | 12,763.00 | 0.76 | 22 | 10,606.00 | 5.29 |
3 | 12,149.00 | 0.25 | 13 | 12,270.00 | 4.78 | 23 | 12,850.00 | 4.53 |
4 | 10,105.00 | 5.98 | 14 | 9667.00 | 3.46 | 24 | 19,918.00 | 1.64 |
5 | 6094.00 | 2.27 | 15 | 2423.00 | 0.31 | 25 | 7300.00 | 5.60 |
6 | 8055.00 | 2.01 | 16 | 16,054.00 | 6.10 | 26 | 3279.00 | 3.40 |
7 | 12,029.00 | 1.83 | 17 | 18,571.00 | 5.54 | 27 | 2501.00 | 5.85 |
8 | 4349.00 | 1.13 | 18 | 5090.00 | 1.76 | 28 | 8467.00 | 3.65 |
9 | 4039.00 | 0.88 | 19 | 13,403.00 | 1.89 | 29 | 10,482.00 | 6.04 |
10 | 13,449.00 | 5.48 | 20 | 3582.00 | 4.09 | 30 | 3614.00 | 0.06 |
Total cost and % CMSI: | $287,446.00 | 100.00 |
Parameter | Value |
---|---|
Crossover probability | 0.7 |
Mutation probability | 0.3 |
Number of generations | 200 |
Tournament size | 3 |
Number of chromosomes | 30 |
Number of individuals | 300 |
Range of decision variables | [0 1] |
No | Optimized Population (Pareto Front) | Projects | %CMSI | Budget (USD) |
---|---|---|---|---|
1 | [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0] | 23 | 84.64 | 200,024.00 |
2 | [1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1] | 22 | 85.08 | 200,040.00 |
3 | [1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0] | 22 | 87.04 | 200,056.00 |
4 | [0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1] | 23 | 87.35 | 200,079.00 |
5 | [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1] | 22 | 88.42 | 200,091.00 |
6 | [1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0] | 21 | 88.86 | 200,120.00 |
7 | [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0] | 23 | 89.18 | 200,145.00 |
8 | [1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1] | 23 | 90.25 | 200,216.00 |
9 | [1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0] | 22 | 92.13 | 200,273.00 |
10 | [1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0] | 21 | 92.20 | 201,314.00 |
Number of Projects | 1.00 | ||
---|---|---|---|
Budget (USD) | 0.96 | 1.00 | |
%CMSI | 0.81 | 0.85 | 1.00 |
Number of projects | Budget (USD) | %CMSI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero Izurieta, R.; Toapanta Toapanta, S.M.; Caucha Morales, L.J.; Hifóng, M.M.B.; Gómez Díaz, E.Z.; Mafla Gallegos, L.E.; Maciel Arellano, M.R.; Orizaga Trejo, J.A. Model to Optimize the Management of Strategic Projects Using Genetic Algorithms in a Public Organization. Information 2022, 13, 533. https://doi.org/10.3390/info13110533
Romero Izurieta R, Toapanta Toapanta SM, Caucha Morales LJ, Hifóng MMB, Gómez Díaz EZ, Mafla Gallegos LE, Maciel Arellano MR, Orizaga Trejo JA. Model to Optimize the Management of Strategic Projects Using Genetic Algorithms in a Public Organization. Information. 2022; 13(11):533. https://doi.org/10.3390/info13110533
Chicago/Turabian StyleRomero Izurieta, Richard, Segundo Moisés Toapanta Toapanta, Luis Jhony Caucha Morales, María Mercedes Baño Hifóng, Eriannys Zharayth Gómez Díaz, Luis Enrique Mafla Gallegos, Ma. Roció Maciel Arellano, and José Antonio Orizaga Trejo. 2022. "Model to Optimize the Management of Strategic Projects Using Genetic Algorithms in a Public Organization" Information 13, no. 11: 533. https://doi.org/10.3390/info13110533
APA StyleRomero Izurieta, R., Toapanta Toapanta, S. M., Caucha Morales, L. J., Hifóng, M. M. B., Gómez Díaz, E. Z., Mafla Gallegos, L. E., Maciel Arellano, M. R., & Orizaga Trejo, J. A. (2022). Model to Optimize the Management of Strategic Projects Using Genetic Algorithms in a Public Organization. Information, 13(11), 533. https://doi.org/10.3390/info13110533