Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning
Abstract
:1. Introduction
2. Background
3. Related Work and Our Contribution
4. Experimental Setup and Data Collection
4.1. Inclusion Criteria
- Age between 18 and 55 years.
- No history of heart disease or hypertension.
- No drugs or alcohol consumption before the experiment.
- No physical constraints for falling (arthritis, etc.).
4.2. The HAR Experiment
4.3. The Collected Data
5. Our Methodology and Implementation Protocol
5.1. Proposed Algorithm
- 1.
- Pre-processing.
- 2.
- Filtering.
- 3.
- Calculating the continuous wavelet transform and creating scalograms.
- 4.
- Fine tuning and retraining a pre-trained CNN.
- 5.
- CNN Classification.
Algorithm 1 Detecting fall with raw ECG signals |
Input: A time series ECG raw data Ts Output: The classified activity label l |
Algorithm 2 CNN_CLASSIFICATION |
Input: A set of Frequency-scale Scalograms Output: The classified activity label l returnl |
5.2. ECG Signal Filtering
- Muscle noise—5–50 Hz.
- External electrical noises—50 or 60 Hz.
- Respiration Noise—0.12–0.5 Hz.
5.2.1. IIR Versus FIR
5.2.2. Elliptical Filter
5.3. Implementation Protocol: Hardware and Software
5.4. Time-Frequency Representations
5.5. Phases of Our Implementation
5.5.1. Training The Network: Phase I
5.5.2. Preparing and Training the Model
5.5.3. Tuning The AlexNet
5.5.4. Activation’s of Different Layers in CNN
5.6. Extension of the Algorithm: Phase II
5.6.1. Data Augmentation and Its Challenges
5.6.2. Tuning the GoogLeNet
5.6.3. Transfer Learning to the Rescue: GoogLeNet and AlexNet
5.6.4. K-Fold Verification
6. Analysis of Results
6.1. Analysis of Fall Vs No-Fall ECG Signals
6.2. Analysis of Scalograms
7. Discussion of the Research Question
8. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ADC | Analog to Digital Conversion |
BLE | Bluetooth Low Energy |
CNN | Convolutional Neural Network |
CPU | Central Processing Unit |
CV | Computer Vision |
CWT | Continuous Wavelet Transform |
DA | Daily Activities |
ECG | Electrocardiogram |
FIR | Finite Impulse Response |
GPU | Graphics Processing Unit |
HAR | Human Activity Recognition |
IIR | Infinite Impulse Response |
ILR | Initial Learning Rate |
LSTM | Long Short-Term Memory |
PLI | Power Line Interface |
RMSprop | Root Mean Square Propagation |
SGDM | Stochastic Gradient Descent with Momentum |
References
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Allcock, L.M.; O’Shea, D. Diagnostic yield and development of a Neuro cardiovascular investigation unit for older adults in a district hospital. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2000, 55, M458–M462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, M.E. Factors Associated with Serious Injury During Falls by Ambulatory Nursing Home Residents. J. Am. Geriatr. Soc. 1987, 35, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Nayak, U.S.; Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. 1981, 282, 266–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ramamoorthy, V.; Gal, U.; Guez, A. Possible Life Saver: A Review on Human Fall Detection Technology. Robotics 2020, 9, 55. [Google Scholar] [CrossRef]
- Genoud, D.; Cuendet, V.; Torrent, J. Soft Fall Detection Using Machine Learning in Wearable Devices. In Proceedings of the 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March 2016; pp. 501–505. [Google Scholar] [CrossRef]
- Lu, N.; Wu, Y.; Feng, L.; Song, J. Deep Learning for Fall Detection: Three-Dimensional CNN Combined with LSTM on Video Kinematic Data. IEEE J. Biomed. Health Inform. 2019, 23, 314–323. [Google Scholar] [CrossRef]
- Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Artificial Neural Networks and Machine Learning— ICANN 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 270–279. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Y.; Zhu, J. New Advances and Challenges of Fall Detection Systems: A Survey. Appl. Sci. 2018, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Vallabh, P.; Malekian, R. Fall detection monitoring systems: A comprehensive review. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1809–1833. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Cao, R.; Wang, X. Robust Indoor Human Activity Recognition Using Wireless Signals. Sensors 2015, 15, 17195–17208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damodaran, N.; Schäfer, J. Device Free Human Activity Recognition using WiFi Channel State Information. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom /IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1069–1074. [Google Scholar] [CrossRef]
- Damodaran, N.; Haruni, E.; Kokhkharova, M.; Schäfer, J. Device free human activity and fall recognition using WiFi channel state information (CSI). CCF Trans. Pervasive Comput. Interact. 2020, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Liu, B. Human daily activity recognition by fusing accelerometer and multi-lead ECG data. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), KunMing, China, 5–8 August 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Castro, D.; Coral, W.; Rodriguez, C.; Cabra, J.; Colorado, J. Wearable-Based Human Activity Recognition Using an IoT Approach. J. Sens. Actuator Netw. 2017, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, R155–R199. [Google Scholar] [CrossRef] [Green Version]
- Kher, D.R.; Pawar, T.; Thakar, D. Impact Analysis of Body Movements on Wearable Ambulatory Electrocardiogram; OMICS International: Hyderabad, India, 2015. [Google Scholar] [CrossRef]
- Turan, A.; Barshan, Ö.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Technique. Sensors 2014, 14, 10691–10708. [Google Scholar]
- Md Shahiduzzaman. Fall detection by Acceleromeer and Heart rate variability Measurement. Glob. J. Comput. Sci. Technol. G Interdiscip. 2015, 15. Available online: https://computerresearch.org/index.php/computer/article/view/1328 (accessed on 29 January 2021).
- MathWorks. Classify Time Series Using Wavelet Analysis and Deep Learning. Available online: https://de.mathworks.com/help/wavelet/examples/signal-classification-with-wavelet-analysis-and-convolutional-neural-networks.html (accessed on 20 August 2018).
- Hoang, H.V.; Tran, M. DeepSense-Inception: Gait Identification from Inertial Sensors with Inception-like Architecture and Recurrent Network. In Proceedings of the 2017 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, China, 15–18 December 2017; pp. 594–598. [Google Scholar] [CrossRef]
- Melillo, P.; Castaldo, R.; Sannino, G.; Orrico, A.; de Pietro, G.; Pecchia, L. Wearable technology and ECG processing for fall risk assessment, prevention and detection. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7740–7743. [Google Scholar] [CrossRef]
- Butt, F.S. Fall Detection Using Machine Learning Techniques on ECG Signals. Master’s Thesis, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany, 2019. [Google Scholar]
- Kim, Y.G.; Shin, D.; Park, M.Y.; Lee, S.; Jeon, M.S.; Yoon, D.; Park, R.W. ECG-ViEW II, a freely accessible electrocardiogram database. PLoS ONE 2017, 12, e0176222. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- La Blunda, L.; Corral-Plaza, D.; Wagner, M.; Ortiz, G.; Medina-Bulo, I. Distributed real-time based human activity analysis system. In Proceedings of the 16th International Conference on Applied Computing in Cagliari (ITALY), Cagliari, Italy, 7–9 November 2019; Volume 6. [Google Scholar]
- La Blunda, L. Fall event Analysis based on sensor fusion. In Proceedings of the Las Jornadas Predoctorales de la Escuela Superior de Ingeniería (JORPRESI), Cádiz, Spain, 2 November 2017. [Google Scholar]
- La Blunda, L.; Gutiérrez-Madroñal, L.; Wagner, M.F.; Medina-Bulo, I. A Wearable Fall Detection System Based on Body Area Networks. IEEE Access 2020, 8, 193060–193074. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, D.F. The normal ECG in childhood and adolescence. Heart 2005, 91, 1626–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucerquia, A.; López, J.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Fleming, J.; Brayne, C. Inability to get up after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90. BMJ 2008, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, N. Detecting Human Falls with a 3-Axis Digital Accelerometer. Analog Dialogue 2009, 43, 3. [Google Scholar]
- Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et al. Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 233–240. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Reiss, A.; Stricker, D. Physical Activity Monitoring Data Set. 2012. Available online: http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring (accessed on 2 February 2021).
- Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. In European Conference on Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–33. [Google Scholar]
- Guan, Y.; Plötz, T. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; ACM: New York, NY, USA, 2017; Volume 1. [Google Scholar] [CrossRef] [Green Version]
- Analog to Digital Conversion. Available online: https://learn.sparkfun.com/tutorials/analog-to-digital-conversion/all (accessed on 2 December 2018).
- Manivel, K.; Ravindran, R.S. Noise Removal for Baseline wander and power line in Electrocardiograph Signals. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 1114–1122. [Google Scholar]
- Das, N.; Chakraborty, M. Performance Analysis of FIR and IIR filters for ECG Signal De-noising based on SNR. In Proceedings of the 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 3–5 November 2017. [Google Scholar]
- Zhang, D. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 1105–1108. [Google Scholar]
- Ara, I.; Hossain, M.N.; Mahbub, S.Y. Baseline drift removal and de-noising of the ECG signal using Wavelet Transform. Int. J. Comput. Appl. 2014, 95, 15–17. [Google Scholar] [CrossRef]
- Lenis, G.; Pilia, N.; Loewe, A.; Schulze, W.H.W.; Dössel, O. Comparison of Baseline Wander Removal Techniques considering the preservation of ST changes in the Ischemic ECG: A simulation Study. Comput. Math. Methods Med. 2017, 2017, 9295029. [Google Scholar] [CrossRef]
- Sanjit, K.M. Digital Signal Processing; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Milchevski, A.; Guse, M. Performance Evaluation of FIR and IIR Filtering of ECG Signals. In International Conference on ICT Innovations; Springer: Berlin/Heidelberg, Germany, 2016; pp. 103–112. [Google Scholar]
- Rani, S.; Kaur, A.; Ubhi, J.S. Comparative study of FIR and IIR filters for the removal of Baseline noises from ECG signal. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 1105–1108. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 3320–3328. [Google Scholar]
- ImageNet. Available online: http://www.image-net.org/ (accessed on 7 December 2018).
- Shin, H.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.J.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Visualize Activations of a Convolutional Neural Network. Available online: https://de.mathworks.com/help/deeplearning/examples/visualize-activations-of-a-convolutional-neural-network.html (accessed on 10 December 2018).
- Kher, R. Wearable Ambulatory Electrocardiogram (ECG) and EEG Dataset. IEEE Dataport. 2020. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25, pp. 1097–1105. [Google Scholar]
- Iwana, B.K.; Uchida, S. An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks. arXiv 2020, arXiv:2007.15951. [Google Scholar]
- Cui, Z.; Chen, W.; Chen, Y. Multi-Scale Convolutional Neural Networks for Time Series Classification. arXiv 2016, arXiv:1603.06995. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
- Geoffrey Hinton, N.S.; Swersky, K. Neural Networks for Machine Learning Online Course. Available online: https://www.classcentral.com/course/neuralnets-398 (accessed on 2 February 2021).
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
No. | Participant Id | Gender | Age | Experiment Duration | Total Fall Readings | Total Resting Readings | Total DA Readings | Duration of each Fall | Duration of each Resting | Duration of each DA |
---|---|---|---|---|---|---|---|---|---|---|
1 | Sub1 | M | 35 | 120 min | 5 | 13 | 5 | 90 s | 90 s | 30 s |
2 | Sub2 | M | 52 | 50 min | 3 | 10 | 0 | 90 s | 90 s | 0 |
3 | Sub3 | F | 30 | 50 min | 6 | 0 | 0 | 90 s | 0 s | 0 |
4 | Sub5 | F | 32 | 120 min | 25 | 36 | 5 | 90 s | 30 s | 30 s |
5 | Sub6 | M | 40 | 45 min | 8 | 0 | 0 | 90 s | 0 s | 0 |
6 | Sub7 | M | 18 | 45 min | 10 | 0 | 0 | 90 s | 0 s | 0 |
Reading Type | Total Count (Phase I) | Total Count (Phase II) |
---|---|---|
Fall | 153 | 500 |
Resting | 104 | 474 |
Daily Activities | - | 296 |
Total | 257 | 1270 |
No. | Algorithm | Train.-Val.-Testing Ratio | ILR | Val. Accuracy | Testing Accuracy |
---|---|---|---|---|---|
1 | SGDM | 0.8-0.1-0.1 | 98.44% | 95.3% | |
2 | SGDM | 0.8-0.1-0.1 | 95.31% | 93.7% | |
3 | SGDM | 0.8-0.1-0.1 | 85.94% | 86.6% | |
4 | RMSprop | 0.8-0.1-0.1 | 39.06% | 39.4% | |
5 | RMSprop | 0.8-0.1-0-1 | 98.44% | 98.4% | |
6 | RMSprop | 0.8-0.1-0-1 | 100% | 97.6% | |
7 | RMSprop | 0.8-0.1-0-1 | 96.09% | 92.1% | |
8 | RMSprop | 0.8-0.1-0-1 | 37.50% | 37.0% |
No. | Algorithm | Train-Val.-Test Ratio | ILR | Val. Accuracy | Testing Accuracy |
---|---|---|---|---|---|
1 | SGDM | 0.8-0.1-0.1 | 100% | 99.2% | |
2 | SGDM | 0.8-0.1-0.1 | 98.44% | 96.9% | |
3 | SGDM | 0.8-0.1-0.1 | 92.19% | 91.3% | |
4 | RMSprop | 0.8-0.1-0.1 | 39.06% | 39.4% | |
5 | RMSprop | 0.8-0.1-0-1 | 100% | 99.2% | |
6 | RMSprop | 0.8-0.1-0-1 | 100% | 99.2% | |
7 | RMSprop | 0.8-0.1-0-1 | 96.88% | 96.1% | |
8 | RMSprop | 0.8-0.1-0-1 | 61.72% | 61.4% | |
9 | SGDM | 0.6-0.2-0.2 | 98.43% | 96.5% | |
10 | SGDM | 0.6-0.2-0.2 | 94.88% | 89.8% | |
11 | SGDM | 0.6-0.2-0.1 | 61.81% | 61.6% | |
12 | RMSprop | 0.6-0.2-0-2 | 98.82% | 98.4% | |
13 | RMSprop | 0.6-0.2-0-2 | 98.43% | 95.3% | |
14 | RMSprop | 0.6-0.2-0-2 | 61.02% | 61.6% |
Actual | |||||
---|---|---|---|---|---|
Daily Activities | Fall | Resting | Total (in Percentage) | ||
Predicted | Daily Activities | 55 | 1 | 0 | 98.2% |
Fall | 5 | 96 | 0 | 95.0% | |
Resting | 0 | 3 | 95 | 96.9% | |
Total (in percentage) | 91.7% | 96.0% | 100% | 96.5% |
Fold 1 | Fold 2 | Fold 3 | Val Accuracy | Test Accuracy | |
---|---|---|---|---|---|
Split 1 | Fold 1 | Fold 2 | Fold 3 | 97.65% | 98.2% |
Split 2 | Fold 1 | Fold 2 | Fold 3 | 98.04% | 97.4% |
Split 3 | Fold 1 | Fold 2 | Fold 3 | 97.39% | 96.5% |
Training data, Testing data | Average Accuracy | 97.69% | 97.36 % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, F.S.; La Blunda, L.; Wagner, M.F.; Schäfer, J.; Medina-Bulo, I.; Gómez-Ullate, D. Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning. Information 2021, 12, 63. https://doi.org/10.3390/info12020063
Butt FS, La Blunda L, Wagner MF, Schäfer J, Medina-Bulo I, Gómez-Ullate D. Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning. Information. 2021; 12(2):63. https://doi.org/10.3390/info12020063
Chicago/Turabian StyleButt, Fatima Sajid, Luigi La Blunda, Matthias F. Wagner, Jörg Schäfer, Inmaculada Medina-Bulo, and David Gómez-Ullate. 2021. "Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning" Information 12, no. 2: 63. https://doi.org/10.3390/info12020063
APA StyleButt, F. S., La Blunda, L., Wagner, M. F., Schäfer, J., Medina-Bulo, I., & Gómez-Ullate, D. (2021). Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning. Information, 12(2), 63. https://doi.org/10.3390/info12020063