Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network
Abstract
1. Introduction
2. Indoor Fire Early Warning Analysis
2.1. Requied Safe Escape Time
2.2. Fire Parameters
- (1)
- Temperature
- (2)
- Smoke concentration
- (3)
- Carbon monoxide
- (4)
- Trend values of fire parameters
2.3. Fusion Algorithm
3. Indoor Fire Early Warning Model
3.1. The Architecture of Fire Detection
3.2. Fire Dataset
3.2.1. Non-Uniform Sampling
3.2.2. Trend Extraction
3.3. Parameters of the BPNN
- According to the theorem of Kolrnogorov, the number of hidden layer nodes is equivalently related to the number of nodes in the input layer:
- Daqi Gao [28] proposed a simplified formula based on least squares method,
- According to the nodes of the input layer and output layer [29], the number of nodes in the hidden layer is as follows:
4. Results and Discussion
4.1. Training Results
4.2. Performance Improvement
4.3. Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, G.; Boehmer, H.; Olenick, S.M. Thermally-Induced Failure of Smoke Alarms. Fire Technol. 2019, 56, 673–692. [Google Scholar] [CrossRef]
- Roman, J. Smoke Signals. In NFPA Journal; National Fire Protection Association: Quincy, MA, USA, 2018. [Google Scholar]
- Chagger, R.; Smith, D. The Causes of False Fire Alarms in Buildings; Briefing Paper; BRE Global Limited: Watford, UK, 2014. [Google Scholar]
- Jordi, F.; Ana, S.; Santiago, M. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review. Sensors 2018, 18, 553. [Google Scholar]
- Solórzano, A.; Fonollosa, J.; Fernandez, L.; Eichmann, J.; Marco, S. Fire detection using a gas sensor array with sensor fusion algorithms. In Proceedings of the 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 28–31 May 2017; pp. 1–3. [Google Scholar]
- Naji, N.; Abid, M.R.; Benhaddou, D.; Krami, N. Context-Aware Wireless Sensor Networks for Smart Building Energy Management System. Information 2020, 11, 530. [Google Scholar] [CrossRef]
- Gaur, A.; Singh, A.; Kumar, A.; Kulkarni, K.S.; Lala, S.; Kapoor, K.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Fire Sensing Technologies: A Review. IEEE Sens. J. 2019, 19, 3191–3202. [Google Scholar] [CrossRef]
- Mitchell, H.B. Introduction. In Data Fusion: Concepts and Ideas; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–14. [Google Scholar]
- Delicato, F.C.; Vandelli, T.; Bonicea, M.; De Farias, C.M. Heracles: A Context-Based Multisensor Sensor Data Fusion Algorithm for the Internet of Things. Information 2020, 11, 517. [Google Scholar] [CrossRef]
- Djeziri, M.A.; Benmoussa, S.; Zio, E. Review on Health Indices Extraction and Trend Modeling for Remaining Useful Life Estimation. In Artificial Intelligence Techniques for a Scalable Energy Transition; Springer Science and Business Media LLC: Cham, Switzerland, 2020; pp. 183–223. [Google Scholar]
- Jing, C.; Jingqi, F. Fire Alarm System Based on Multi-Sensor Bayes Network. Procedia Eng. 2012, 29, 2551–2555. [Google Scholar] [CrossRef]
- Wang, T.; Hu, J.; Ma, T.; Song, J. Forest fire detection system based on Fuzzy Kalman filter. In Proceedings of the 2020 International Conference on Urban Engineering and Management Science (ICUEMS), Zhuhai, China, 24–26 April 2020; pp. 630–633. [Google Scholar]
- Rachman, F.Z.; Hendrantoro, G. A Fire Detection System Using Multi-Sensor Networks Based on Fuzzy Logic in Indoor Scenarios. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–6. [Google Scholar]
- Mobin, M.I.; Abid-Ar-Rafi, M.; Islam, M.N.; Hasan, M.R. An Intelligent Fire Detection and Mitigation System Safe from Fire (SFF). Int. J. Comput. Appl. 2016, 133, 1–7. [Google Scholar] [CrossRef]
- Nakıp, M.; Güzeliş, C. Multi-Sensor Fire Detector based on Trend Predictive Neural Network. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 600–604. [Google Scholar]
- Liang, Y.-H.; Tian, W.-M. Multi-sensor Fusion Approach for Fire Alarm Using BP Neural Network. In Proceedings of the 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), Ostrawva, Czech Republic, 7–9 September 2016; pp. 99–102. [Google Scholar]
- Zhang, J.; Ye, Z.; Li, K. Multi-sensor information fusion detection system for fire robot through back propagation neural network. PLoS ONE 2020, 15, e0236482. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.N.; Rao, P.J.; Duvvuru, R.; Bendalam, S.; Gemechu, R. Fire detection in Kambalakonda Reserved Forest, Visakhapatnam, Andhra Pradesh, India: An Internet of Things Approach. Mater. Today Proc. 2018, 5, 1162–1168. [Google Scholar] [CrossRef]
- Gwynne, S.M.V.; Rosenbaum, E.R. Employing the Hydraulic Model in Assessing Emergency Movement. In SFPE Handbook of Fire Protection Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 2115–2151. [Google Scholar]
- Yan, X.; Cheng, H.; Zhao, Y.; Yu, W.; Huang, H.; Zheng, X. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network. Sensors 2016, 16, 1228. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, A.; Bagnerini, P.; Gaggero, M.; Mantelli, L. Parameter estimation of fire propagation models using level set methods. Appl. Math. Model. 2021, 92, 731–747. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, K.; Chai, Y.; Li, Y. A Multi-sensor Characteristic Parameter Fusion Analysis Based Electrical Fire Detection Model. In Proceedings of the 2018 Chinese Intelligent Systems Conference; Springer: Singapore, 2019; pp. 397–410. [Google Scholar]
- Wu, L.; Yuan, H.; Shu, X. Fire Detection and Control Engineering; University of Science and Technology of China Press: Hefei, China, 2013. [Google Scholar]
- Gong, J.; JI, S. Photogrammetry and Deep Learning. J. Geod. Geoinf. Sci. 2018, 47, 693–704. [Google Scholar]
- Jing, L.; Wang, T.; Zhao, M.; Wang, P. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors 2017, 17, 414. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, R.; Peacock, R.D.; Averill, J.; Cleary, T.; Bryner, N.; Walton, W.; Reneke, P.A.; Kuligowski, E.D. Performance of Home Smoke Alarms, Analysis of the Response of Several Available Technologies in Residential Fire Settings; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.
- El-Din, A.G.; Smith, D.W. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Res. 2002, 36, 1115–1126. [Google Scholar] [CrossRef]
- Daqi, G.; Shouyi, W. An optimization method for the topological structures of feed-forward multi-layer neural networks. Pattern Recognit. 1998, 31, 1337–1342. [Google Scholar] [CrossRef]
- Ding, Y. Computational Intelligence: Theory, Technology and Applications; Science Press: Beijing, China, 2004. [Google Scholar]
- Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M. Metrics for evaluating performance of prognostic techniques. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Sucuoglu, H.S.; Bogrekci, I.; Demircioğlu, P. Development of Mobile Robot with Sensor Fusion Fire Detection Unit. IFAC-PapersOnLine 2018, 51, 430–435. [Google Scholar] [CrossRef]
- Jackson, M.; Robins, I. Gas sensing for fire detection: Measurements of CO, CO2, H2, O2, and smoke density in European standard fire tests. Fire Saf. J. 1994, 22, 181–205. [Google Scholar] [CrossRef]
Number of Nodes | Number of Iterations | Mean Square Error |
---|---|---|
4 | 29 | 0.0074 |
5 | 30 | 0.0045 |
6 | 56 | 0.0022 1 |
7 | 87 | 0.0040 |
8 | 51 | 0.0074 |
9 | 59 | 0.0165 |
10 | 68 | 0.0072 |
11 | 59 | 0.0036 |
12 | 50 | 0.0057 |
13 | 82 | 0.0028 |
Training Parameters | Value |
---|---|
Sample The number of samples for training: 2478 The number of samples for validation: 531 The number of samples for testing: 531 | 3540 |
Nodes of input | 6 |
Hidden neurons | 6 |
Output neurons | 3 |
TransferFcnA 1 | tansig |
TransferFcnB 2 | purelin |
Train function | trainlm |
Performance function | mse |
Goal | 1 × 10−4 |
Learning rate | 0.01 |
Algorithm | BPNN | Trend_BPNN |
---|---|---|
Numbers of iterations | 155 | 56 |
Mean square error (MSE) | 0.433% | 0.216% |
Mean absolute error (MAE) | 0.0263 | 0.0092 |
Standard deviation of the error | 0.1002 | 0.1016 |
Mean absolute deviation (MAD) | 0.0129 | 0.0088 |
Scenario | Burning Material | Type | Simulation Result 1 | Fire Detection Time (s) | ||
---|---|---|---|---|---|---|
Reference | Trend_BPNN | RBF | ||||
1 | wood | Flaming | Y | 414 | 270 | 325 |
2 | cellulosic | Smoldering | Y | 480 | 375 | 374 |
3 | cotton | Smoldering | Y | 156 | 80 | 79 |
4 | polyurethane | Flaming | Y | 78 | 40 | 47 |
5 | n-heptane | Flaming | Y | 26 | 15 | 16 |
6 | methylated spirits | Flaming | Y | 39 | 30 | 50 |
7 | environment 1 | No fire | N | ~ | ~ | ~ |
8 | environment 2 | No fire | N | ~ | ~ | ~ |
9 | environment 3 | No fire | N | ~ | ~ | ~ |
10 | environment 4 | No fire | N | ~ | ~ | ~ |
11 | environment 5 | No fire | N | ~ | ~ | ~ |
12 | environment 6 | No fire | N | ~ | ~ | ~ |
Accuracy of fire warning | 99.4% | 96.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Chen, L.; Hao, X. Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network. Information 2021, 12, 59. https://doi.org/10.3390/info12020059
Wu L, Chen L, Hao X. Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network. Information. 2021; 12(2):59. https://doi.org/10.3390/info12020059
Chicago/Turabian StyleWu, Lesong, Lan Chen, and Xiaoran Hao. 2021. "Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network" Information 12, no. 2: 59. https://doi.org/10.3390/info12020059
APA StyleWu, L., Chen, L., & Hao, X. (2021). Multi-Sensor Data Fusion Algorithm for Indoor Fire Early Warning Based on BP Neural Network. Information, 12(2), 59. https://doi.org/10.3390/info12020059