A Study of Consumer Repurchase Behaviors of Smartphones Using Artificial Neural Network
Abstract
:1. Introduction
1.1. The Business Phenomenon
1.2. Research Questions
- What are the factors that affect smartphone repurchase?
- How does consumer recognition of smartphone brand relate to consumer satisfaction and purchasing habits (continuous intention to use)?
- What do the quality and ease of use, as perceived by consumers, have to do with consumer satisfaction and purchasing habits?
2. Theoretical Background
2.1. Theory of Reasoned Action (TRA)
2.2. Heuristics Theory
2.3. Artificial Neural Network (ANN)
3. Literature Review
3.1. Intention to Repurchase
3.2. Factors Assumed to Affect the Intention to Repurchase
3.3. Consumer Satisfaction
3.4. Social Influence
3.5. Emotional Loyalty
3.6. Habit
4. Research Hypotheses and Research Model
4.1. Research Hypotheses
4.2. Research Model
5. Methodology for Data Collection, Data Analysis, and Measurement
5.1. Data Collection and Sample Size
5.2. Measurement
5.3. Analysis
6. Data Analysis
6.1. Descriptive Statistics
6.2. Factor Analysis
6.3. Correlation Analysis
6.4. Regression Analysis
6.5. Analysis of Research Model Using ANN (Relative 7:3, Number of Hidden Layers (One))
6.6. Analysis of Research Model Using ANN (Relative 7:3, Number of Hidden Layers (Two))
7. Research Results
8. Research Implication
8.1. Theoretical Implication
8.2. Managerial Implication
8.3. Differentiation from Previous Research
- This study examined whether customer habits directly affect their repurchase intention;
- Marketing strategies for repurchase customers can differ from those for other competitors;
- This study involved analyzing factors of social influence that directly affect repurchase intention.
9. Research Limitation and Further Study
Funding
Conflicts of Interest
References
- Gallup Korea Daily Opinion. Available online: https://www.gallup.co.kr/gallupdb/reportContent.asp?seqN=1041 (accessed on 31 July 2020).
- Malara, N.; Dang, S. Verizon Earnings Beat Estimatesas Cheaper Plans Attract Customers. Available online: https://www.reuters.com/article/us-verizon-results/verizon-earnings-beat-estimates-as-cheaper-plans-attract-customers-idUSKBN1X41D5 (accessed on 25 October 2019).
- Reichheld, F.F.; Sasser, J.W. Zero defections: Quality comes to services. Harv. Bus. Rev. 1990, 68, 105–111. [Google Scholar] [PubMed]
- DeSouza, G. Designing a customer retention plan. J. Bus. Strategy 1992, 13, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.O.; Sasser, W.E. Why satisfied customers defect. Harv. Bus. Rev. 1995, 73, 88–99. [Google Scholar] [CrossRef]
- Average Lifespan (Replacement Cycle Length) of Smartphones in the United States from 2013 to 2022. Available online: https://www.statista.com/statistics/619788/average-smartphone-life (accessed on 31 July 2020).
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Bagozzi, R.P.; Baumgartner, H.; Yi, Y. State versus action orientation and the theory of reasoned action: An application to coupon usage. J. Consum. Res. 1992, 18, 505–518. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Kahneman, D.; Slovic, S.P.; Slovic, P.; Tversky, A. Judgment under Uncertainty: Heuristics and Biases; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Simon, H.; Egidi, M.; Viale, R.; Marris, R. Economics, Bounded Rationality and the Cognitive Revolution; Edward Elgar: Aldershot, UK, 1992. [Google Scholar]
- Chen, C.; Li, K.; Duan, M.; Li, K. Chapter 6—Extreme learning machine and its applications in big data processing. In Intelligent Data-Centric Systems; Hsu, H.-H., Chang, C.-Y., Hsu, C.-H., Eds.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Henkel, D.; Houchaime, N.; Locatelli, N.; Singh, S.; Zeithaml, V.A.; Bittner, M.J. The impact of emerging WLANs on incumbent cellular service providers in the U.S. In M.J. Services Marketing; McGraw-Hill: Singapore, 2006. [Google Scholar]
- Cronin, J.J.; Brady, M.K.; Hult, G.T.M. Assessing the effects of quality, value, and customer satisfaction on consumer behavioural intentions in service environments. J. Retail. 2000, 76, 193–218. [Google Scholar] [CrossRef]
- Dick, A.S.; Basu, K. Customer loyalty: Toward an integrated conceptual framework. J. Acad. Mark. Sci. 1994, 22, 99–113. [Google Scholar] [CrossRef]
- Ehrenberg, A.S.; Goodhardt, G.J. A comparison of American and British repeat-buying habits. J. Mark. Res. 1968, 5, 29–33. [Google Scholar] [CrossRef]
- Jacoby, J.; Kyner, D.B. Brand loyalty vs. repeat purchasing behavior. J. Mark. Res. 1973, 10, 1–9. [Google Scholar] [CrossRef]
- Law, A.K.; Hui, Y.V.; Zhao, X. Modeling repurchase frequency and customer satisfaction for fast food outlets. Int. J. Qual. Reliab. Manag. 2004, 21, 545–563. [Google Scholar] [CrossRef]
- Mittal, V.; Kamakura, W.A. Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics. J. Mark. Res. 2001, 38, 131–142. [Google Scholar] [CrossRef]
- Seiders, K.; Voss, G.B.; Grewal, D.; Godfrey, A.L. Do satisfied customers buy more? Examining moderating influences in a retailing context. J. Mark. 2005, 69, 26–43. [Google Scholar] [CrossRef]
- Peyrot, M.; Van Doren, D. Effect of a class action suit on consumer repurchase intentions. J. Consum. Aff. 1994, 28, 361–379. [Google Scholar] [CrossRef]
- Hennig-Thurau, T. Customer orientation of service employees: Its impact on customer satisfaction, commitment, and retention. Int. J. Serv. Ind. Manag. 2004, 15, 460–478. [Google Scholar] [CrossRef]
- Narayandas, D. Measuring and managing the benefits of customer retention: An empirical investigation. J. Serv. Res. 1998, 1, 108–128. [Google Scholar] [CrossRef]
- Zineldin, M. The royalty of loyalty: CRM, quality and retention. J. Consum. Mark. 2006, 23, 430–437. [Google Scholar] [CrossRef]
- Morgan, R.M.; Hunt, S.D. The commitment-trust theory of relationship marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- Hume, M.; Mort, G.S.; Winzar, H. Exploring repurchase intention in a performing arts context: Who comes? and why do they come back? Int. J. Nonprofit Volunt. Sect. Mark. 2007, 12, 135–148. [Google Scholar] [CrossRef]
- Oliver, R.L. Satisfaction: A Behavioral Perspective on the Consumer; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Rust, R.; Zahorik, A.; Keiningham, T. Return on Quality (ROQ): Making service quality financially accountable. J. Mark. 1995, 59, 58–70. [Google Scholar] [CrossRef]
- Wen, C.; Prybutok, V.R.; Xu, C. An integrated model for customer online repurchase intention. J. Comput. Inf. Syst. 2011, 52, 14–23. [Google Scholar]
- Rice, R.E.; Grant, A.E.; Schmitz, J.; Torobin, J. Individual and network influences on the adoption and perceived outcomes of electronic messaging. Soc. Netw. 1990, 12, 27–55. [Google Scholar] [CrossRef]
- Friedkin, N.E. A Structural Theory of Social Influence; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Maisam, S.; Mahsa, R.D. Positive word of mouth marketing: Explaining the roles of value congruity and brand love. J. Compet. 2016, 8, 19–37. [Google Scholar]
- Dixon, J.; Bridson, K.; Evans, J.; Morrison, M. An alternative perspective on relationships, loyalty and future store choice. Int. Rev. Retail. Distrib. Consum. Res. 2005, 15, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Arruda-Filho, E.J.; Cabusas, J.A.; Dholakia, N. Social behavior and brand devotion among iPhone innovators. Int. J. Inf. Manag. 2010, 30, 475–480. [Google Scholar] [CrossRef]
- Liao, C.H.; Hsieh, I.Y. Determinants of consumer’s willingness to purchase gray-market smartphones. J. Bus. Ethics 2013, 114, 409–424. [Google Scholar] [CrossRef]
- Pihlström, M.; Brush, G.J. Comparing the perceived value of information and entertainment mobile services. Psychol. Mark. 2008, 25, 732–755. [Google Scholar] [CrossRef]
- Neal, D.T.; Wood, W.; Quinn, J.M. Habits—A repeat performance. Curr. Dir. Psychol. Sci. 2006, 15, 198–202. [Google Scholar] [CrossRef]
- Chiu, C.M.; Hsu, M.H.; Lai, H.; Chang, C.M. Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decis. Support Syst. 2012, 53, 835–845. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M. How habit limits the predictive power of intention: The case of information systems continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.W.; Sullivan, M.W. The antecedents and consequences of customer satisfaction for firms. Mark. Sci. 1993, 12, 125–143. [Google Scholar] [CrossRef]
- Fornell, C. A national customer satisfaction barometer: The Swedish experience. J. Mark. 1992, 56, 6–21. [Google Scholar] [CrossRef]
- Tsai, H.T.; Huang, H.C.; Jaw, Y.L.; Chen, W.K. Why on-line customers remain with a particular e-retailer: An integrative model and empirical evidence. Psychol. Mark. 2006, 23, 447–464. [Google Scholar] [CrossRef]
- Davidon, M. Have you heard the word? The effect of word of mouth on perceived justice, satisfaction and repurchase intentions following complaint handling. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2003, 16, 67–79. [Google Scholar]
- Durvasula, S.; Lysonski, S.; Mehta, S.C.; Tang, B.P. Forging relationships with services: The antecedents that have an impact on behavioural outcomes in the life insurance industry. J. Financ. Serv. Mark. 2004, 8, 314–326. [Google Scholar] [CrossRef]
- Eggert, A.; Ulaga, W. Customer perceived value: A substitute for satisfaction in business markets? J. Bus. Ind. Mark. 2002, 17, 107–118. [Google Scholar] [CrossRef]
- Harris, L.C.; Goode, M.M. The four levels of loyalty and the pivotal role of trust: A study of online service dynamics. J. Retail. 2004, 80, 139–158. [Google Scholar] [CrossRef]
- Jones, M.A.; Mothersbaugh, D.L.; Beatty, S.E. Switching barrier sand repurchase intentions in services. J. Retail. 2000, 76, 259–274. [Google Scholar] [CrossRef]
- Preis, M.W. The impact of interpersonal satisfaction on repurchase decisions. J. Supply Chain. Manag. 2003, 39, 30–38. [Google Scholar] [CrossRef]
- Szymanski, D.M.; Henard, D.H. Customer satisfaction: A meta-analysis of the empirical evidence. J. Acad. Mark. Sci. 2001, 29, 16–35. [Google Scholar] [CrossRef]
- Olsen, S.O. Comparative evaluation and the relationship between quality, satisfaction, and repurchase loyalty. J. Acad. Mark. Sci. 2002, 30, 240–249. [Google Scholar] [CrossRef]
- Taylor, S.A.; Hunter, G.L.; Longfellow, T.A. Testing an expanded attitude model of goal-directed behavior in a loyalty context. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2006, 19, 18–39. [Google Scholar]
- Bassi, F.; Guido, G. Measuring customer satisfaction: From product performance to consumption experience. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2006, 19, 76–88. [Google Scholar]
- Halstead, D.; Jones, M.A.; Cox, A.N. Satisfaction theory and the disadvantaged consumer. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2007, 20, 15–35. [Google Scholar]
- Hicks, J.M.; Behe, B.K.; Page, T.J.; Dennis, J.H.; Fernandez, R.T. Delighted Consumers Buy Again. HortScience 2005, 40, 1063E–1064. [Google Scholar] [CrossRef] [Green Version]
- Leingpibul, T.; Thomas, S.; Allen Broyles, S.; Ross, R.H. Loyalty’s influence on the consumer satisfaction and (re) purchase behavior relationship. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2009, 22, 36–53. [Google Scholar]
- Hellier, P.K.; Geursen, G.M.; Carr, R.A.; Rickard, J.A. Customer repurchase intention: A general structural equation model. Eur. J. Mark. 2003, 37, 1762–1800. [Google Scholar] [CrossRef] [Green Version]
- Butcher, K.; Sparks, B.; O’Callaghan, F. Effect of social influence on repurchase intentions. J. Serv. Mark. 2002, 16, 503–514. [Google Scholar] [CrossRef]
- White, K.M.; Smith, J.R.; Terry, D.J.; Greenslade, J.H.; McKimmie, B.M. Social influence in the theory of planned behaviour: The role of descriptive, injunctive, and in-group norms. Br. J. Soc. Psychol. 2009, 48, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Delre, S.A.; Broekhuizen, T.L.; Jager, W. The effect of social influence on market inequalities in the motion picture industry. Adv. Complex Syst. 2008, 11, 273–287. [Google Scholar] [CrossRef]
- Rana, S.S.; Osman, A.; Othman, Y.H. Factors affecting purchase intention of customers to shop at hypermarkets. Mediterr. J. Soc. Sci. 2015, 6, 429. [Google Scholar] [CrossRef] [Green Version]
- Chauke, X.D.; Dhurup, M. A generation X cohort analysis of E-shoppers: Satisfaction, loyalty and repurchase intentions in a developing country. J. Soc. Sci. 2017, 52, 145–154. [Google Scholar] [CrossRef]
- Bansal, H.S.; Taylor, S.F. The service provider switching model (spsm) a model of consumer switching behavior in the services industry. J. Serv. Res. 1999, 2, 200–218. [Google Scholar] [CrossRef]
- Albert, N.; Merunka, D. The role of brand love in consumer-brand relationships. J. Consum. Mark. 2013, 30, 258–266. [Google Scholar] [CrossRef]
- Çalık, N. Markaya Yönelik Tüketici Davranişi. Anadolu Üniv. İktisadi İdari Bilimler Fakültesi Derg. 1992, 10, 293–306. Available online: https://dergipark.org.tr/tr/pub/anadoluibfd/issue/48366/614041 (accessed on 31 July 2020).
- Ballantyne, R.; Warren, A.; Nobbs, K. The evolution of brand choice. J. Brand Manag. 2006, 13, 339–352. [Google Scholar] [CrossRef]
- Baldinger, A.L.; Rubinson, J. Brand loyalty: The link between attitude and behavior. J. Advert. Res. 1996, 36, 22–35. [Google Scholar]
- Zheng, X.; Lee, M.; Cheung, C.M. Examining e-loyalty towards online shopping platforms. Internet Res. 2017, 27, 709–726. [Google Scholar] [CrossRef]
- Quinn, J.M.; Wood, W. Habits across the Lifespan; Duke University: Durham, NC, USA, 2005; in press. [Google Scholar]
- Wood, W.; Quinn, J.; Kashy, D. Habits in everyday life: Thought, emotion, and action. J. Personal. Soc. Psychol. 2002, 83, 1281–1297. [Google Scholar] [CrossRef]
- Leone, L.; Perugini, M.; Ercolani, A.P. A comparison of three models of attitude—behavior relationships in the studying behavior domain. Eur. J. Soc. Psychol. 1999, 29, 161–189. [Google Scholar] [CrossRef]
- Trafimow, D. Habit as both a direct cause of intention to use a condom and as a moderator of the attitude-intention and subjective norm-intention relations. Psychol. Health 2000, 15, 383–393. [Google Scholar] [CrossRef]
- Verplanken, V. Beyond frequency: Habit as mental construct. Br. J. Soc. Psychol. 2006, 45, 639–656. [Google Scholar] [CrossRef] [PubMed]
- Gefen, D. E-commerce: The role of familiarity and trust. Omega 2000, 28, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Rauyruen, P.; Miller, K.E.; Groth, M. B2B services: Linking service loyalty and brand equity. J. Serv. Mark. 2009, 23, 175–186. [Google Scholar] [CrossRef]
- Lin, M.Y.; Chang, L.H. Determinants of habitual behaviour for national and leading brands in China. J. Prod. Brand Manag. 2003, 12, 94–107. [Google Scholar] [CrossRef]
- Khare, A.; Inman, J. Habitual behavior in American eating patterns: The role of meal occasions. J. Consum. Res. 2006, 32, 567–575. [Google Scholar] [CrossRef]
- Seetharaman, P.B. Modeling multiple sources of state dependence in random utility models: A distributed lag approach. Mark. Sci. 2004, 23, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Vogel, V.; Evanschitzky, H.; Ramaseshan, B. Customer equity drivers and future sales. J. Mark. 2008, 72, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Anshari, M.; Alas, Y.; Guan, L.S. Developing online learning resources: Big data, social networks, and cloud computing to support pervasive knowledge. Educ. Inf. Technol. 2016, 21, 1663–1677. [Google Scholar] [CrossRef]
- Pew Research Center. Available online: https://www.pewglobal.org/2018/06/19/global-technology-use-appendix-d-detailed-tables/pg_2018-06-19_global-tech_5-01/ (accessed on 31 July 2020).
- Yang, J.; He, X.; Lee, H. Social reference group influence on mobile phone purchasing behavior: A cross-nation comparative study. Int. J. Mob. Commun. 2007, 5, 319–338. [Google Scholar] [CrossRef]
- Kulviwat, S.; Bruner, G.C., II; Al-Shuridah, O. The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption. J. Bus. Res. 2009, 62, 706–712. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Acceptance of e-commerce services: The case of electronic brokerages. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2000, 30, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Wu, S.; Tsai, R.J. Integrating perceived playfulness into expectation-confirmation model for web portal context. Inf. Manag. 2005, 42, 683–693. [Google Scholar] [CrossRef]
- Hsu, M.H.; Yen, C.H.; Chiu, C.M.; Chang, C.M. A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. Int. J. Hum. Comput. Stud. 2006, 64, 889–904. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, M.Y. Emotional loyalty and share of wallet: A contingency approach. J. Retail. Consum. Serv. 2010, 17, 333–339. [Google Scholar] [CrossRef]
- Ersche, K.D.; Lim, T.V.; Ward, L.H.; Robbins, T.W.; Stochl, J. Creature of habit: A self-report measure of habitual routines and automatic tendencies in everyday life. Personal. Individ. Differ. 2017, 116, 73–85. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1094–1096. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Bearden, W.O.; Teel, J.E. Selected determinants of consumer satisfaction and complaint reports. J. Mark. Res. 1983, 20, 21–28. [Google Scholar] [CrossRef]
- Roest, H.; Pieters, R. The nomological net of perceived service quality. Int. J. Serv. Ind. Manag. 1997, 8, 336–351. [Google Scholar] [CrossRef]
- Ratneshwar, S.; Chaiken, S. Comprehension’s role in persuasion: The case of its moderating effect on the persuasive impact of source cues. J. Consum. Res. 1991, 18, 52–62. [Google Scholar] [CrossRef] [Green Version]
Case | Intention to Repurchase by Smartphone Brand | |||||||
---|---|---|---|---|---|---|---|---|
Samsung Galaxy | Apple IPhone | LG G/V/X | Other | Answer Refusal | ||||
S/A/J | Note | |||||||
Currently Used Smartphone Brand | Samsung Galaxy S/A/J | 423 | 61% | 4% | 4% | 7% | 1% | 24% |
Galaxy Note | 137 | 6% | 67% | 6% | 5% | 1% | 15% | |
Apple iPhone | 161 | 9% | 3% | 77% | 4% | 8% | ||
LGG/V/X | 153 | 11% | 4% | 3% | 47% | 0% | 34% |
Construct | Measurement Items | Related Studies |
---|---|---|
Social Influence |
| [82,83] |
Consumer Satisfaction |
| [84,85,86] |
Emotional Loyalty |
| [87] |
Habit |
| [88] |
Intention to Repurchase |
| [84,85,86] |
n | Minimum | Maximum | Mean | Standard Deviation | Variance | ||
---|---|---|---|---|---|---|---|
Statistic | Standard Error | ||||||
Q4 | 390 | 1 | 5 | 3.22 | 0.056 | 1.039 | 1.079 |
Q5 | 390 | 1 | 5 | 3.10 | 0.060 | 1.114 | 1.240 |
Q6 | 390 | 1 | 5 | 3.09 | 0.060 | 1.110 | 1.233 |
Q8 | 390 | 1 | 5 | 3.82 | 0.042 | 0.786 | 0.617 |
Q9 | 390 | 1 | 5 | 3.55 | 0.045 | 0.842 | 0.710 |
Q10 | 390 | 1 | 5 | 3.68 | 0.043 | 0.808 | 0.652 |
Q11 | 390 | 1 | 5 | 3.64 | 0.042 | 0.783 | 0.613 |
Q13 | 390 | 1 | 5 | 3.66 | 0.042 | 0.790 | 0.624 |
Q14 | 390 | 1 | 5 | 3.56 | 0.042 | 0.792 | 0.627 |
Q15 | 390 | 1 | 5 | 3.65 | 0.042 | 0.783 | 0.614 |
Q18 | 390 | 1 | 5 | 3.15 | 0.048 | 0.893 | 0.798 |
Q19 | 390 | 1 | 5 | 2.65 | 0.050 | 0.934 | 0.873 |
Q20 | 390 | 1 | 5 | 2.57 | 0.052 | 0.965 | 0.931 |
Q25 | 390 | 1 | 5 | 3.03 | 0.054 | 1.001 | 1.002 |
Q28 | 390 | 1 | 5 | 2.98 | 0.054 | 1.003 | 1.005 |
Q29 | 390 | 1 | 5 | 3.18 | 0.052 | 0.972 | 0.944 |
Q33 | 390 | 1 | 5 | 3.35 | 0.043 | 0.799 | 0.638 |
Gender | ||||
Frequency | Percentage | Valid Percentage | Cumulative Percentage | |
Man | 193 | 49.5 | 49.5 | 49.5 |
Woman | 197 | 50.5 | 50.5 | 100.0 |
Total | 390 | 100.0 | 100.0 | |
Age | ||||
Frequency | Percentage | Valid Percentage | Cumulative Percentage | |
20 s | 112 | 28.7 | 28.7 | 28.7 |
30 s | 177 | 45.4 | 45.4 | 74.1 |
40 s | 52 | 13.3 | 13.3 | 87.4 |
50 s | 49 | 12.6 | 12.6 | 100.0 |
Total | 390 | 100.0 | 100.0 | |
Number of Smartphone Repurchases | ||||
Number of smartphone repurchases | Frequency | Percentage | Valid Percentage | Cumulative Percentage |
2 | 29 | 7.5 | 7.5 | 7.5 |
3 | 91 | 23.3 | 23.3 | 30.7 |
4 | 90 | 23.0 | 23.0 | 53.7 |
5 | 105 | 27.0 | 27.0 | 80.7 |
6 | 33 | 8.3 | 8.3 | 89.1 |
7 | 9 | 2.3 | 2.3 | 91.4 |
8 | 6 | 1.4 | 1.4 | 92.8 |
9 | 1 | 0.3 | 0.3 | 93.1 |
10 | 20 | 5.2 | 5.2 | 98.3 |
12 | 1 | 0.3 | 0.3 | 98.6 |
15 | 3 | 0.9 | 0.9 | 99.4 |
16 | 1 | 0.3 | 0.3 | 99.7 |
17 | 1 | 0.3 | 0.3 | 100.0 |
Total | 390 | 100.0 | 100.0 |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.889 | |
Bartlett’s Test of Sphericity | Approximate chi-square | 5406.133 |
df | 528 | |
Sig. | 0.000 |
Factor | Cronbach’s Alpha | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | |||
Customer Satisfaction | Q11 | 0.905 | 0.896 | ||||
Q10 | 0.883 | ||||||
Q9 | 0.831 | ||||||
Q8 | 0.689 | ||||||
Social Influence | Q6 | 0.871 | 0.784 | ||||
Q5 | 0.716 | ||||||
Q4 | 0.618 | ||||||
Habit | Q29 | 0.709 | 0.708 | ||||
Q28 | 0.661 | ||||||
Q25 | 0.612 | ||||||
Emotional Loyalty | Q20 | 0.817 | 0.8 | ||||
Q19 | 0.745 | ||||||
Q18 | 0.670 | ||||||
Intention to Repurchase | Q14 | 0.808 | 0.848 | ||||
Q15 | 0.773 | ||||||
Q13 | 0.715 | ||||||
Q33 | 0.604 |
Social Influence | Emotional Loyalty | Intention to Repurchase | Customer Satisfaction | ||
---|---|---|---|---|---|
Social Influence | Pearson correlation | 1 | 0.327 ** | 0.196 ** | 0.182 ** |
Sig. (2-tailed) | 0.000 | 0.002 | 0.001 | ||
n | 390 | 390 | 390 | 390 | |
Emotional Loyalty | Pearson correlation | 0.327 ** | 1 | 0.515 ** | 0.397 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||
n | 390 | 390 | 390 | 390 | |
Intention to Repurchase | Pearson correlation | 0.169 ** | 0.467 ** | 1 | 0.728 ** |
Sig. (2-tailed) | 0.002 | 0.000 | 0.000 | ||
n | 390 | 390 | 390 | 390 | |
Customer Satisfaction | Pearson correlation | 0.182 ** | 0.397 ** | 0.728 ** | 1 |
Sig. (2-tailed) | 0.001 | 0.000 | 0.000 | ||
n | 390 | 390 | 390 | 390 |
Model | Variables Entered | Variables Removed | Method |
---|---|---|---|
1 | Customer satisfaction | Stepwise (criteria: probability of F to enter ≤ 0.050, probability of F to remove ≥ 0.100). | |
2 | Emotional loyalty |
Model | R | R Square | Adjusted R Square | Standard Error of the Estimate | Change Statistics | Durbin–Watson | ||||
---|---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | ||||||
1 | 0.728 a | 0.530 | 0.529 | 0.47442 | 0.530 | 390.500 | 1 | 346 | 0.000 | |
2 | 0.753 b | 0.568 | 0.565 | 0.45575 | 0.038 | 29.934 | 1 | 345 | 0.000 | 1.869 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|---|
B | Standard Error | Beta | ||||
1 | (Constant) | 0.996 | 0.135 | 7.360 | 0.000 | |
Customer satisfaction | 0.716 | 0.036 | 0.728 | 19.761 | 0.000 | |
2 | (Constant) | 0.780 | 0.136 | 5.743 | 0.000 | |
Customer satisfaction | 0.634 | 0.038 | 0.645 | 16.715 | 0.000 | |
Emotional loyalty | 0.185 | 0.034 | 0.211 | 5.471 | 0.000 |
n | Percentage | ||
---|---|---|---|
Sample | Training | 283 | 72.75% |
Testing | 106 | 27.25% | |
Valid | 389 | 100.0% | |
Excluded | 1 | ||
Total | 390 |
Input Layer | Factors | 1 | Customer satisfaction |
2 | Habit | ||
3 | Social influence | ||
4 | Emotional loyalty | ||
Number of units | 51 | ||
Hidden Layer(s) | Number of hidden layers | 1 | |
Number of units in hidden layer 1a | 8 | ||
Activation function | Sigmoid | ||
Output Layer(s) | Dependent variables | 1 | Predicted value for MLP predicted value |
Number of units | 6 | ||
Activation function | Softmax | ||
Error function | Cross-entropy |
Training | Cross-entropy error | 13.233 |
Percentage incorrect predictions | 0.0% | |
Stopping rule used | 1 consecutive step(s) with no decrease in error a | |
Testing | Cross-entropy error | 50.596 |
Percentage incorrect predictions | 7.4% |
Model | Variables Entered | Variables Removed | Method |
---|---|---|---|
1 | Customer satisfaction | Stepwise (criteria: probability of F to enter ≤ 0.050, probability of F to remove ≥ 0.100). | |
2 | Emotional loyalty | ||
3 | Social influence |
Model | R | R Square | Adjusted R Square | Standard Error of the Estimate | Change Statistics | Durbin–Watson | ||||
---|---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | ||||||
1 | 0.814 a | 0.663 | 0.663 | 0.34972 | 0.663 | 1429.476 | 1 | 726 | 0.000 | |
2 | 0.831 b | 0.690 | 0.690 | 0.33463 | 0.028 | 65.913 | 1 | 725 | 0.000 | |
3 | 0.835 c | 0.696 | 0.696 | 0.33155 | 0.006 | 14.557 | 1 | 724 | 0.000 | 1.869 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Variance Inflation Factors (VIF) | ||
---|---|---|---|---|---|---|---|
B | Standard Error | Beta | |||||
1 | (Constant) | 1.128 | 0.070 | 16.190 | 0.000 | ||
Customer satisfaction | 0.698 | 0.018 | 0.814 | 37.808 | 0.000 | 1.000 | |
2 | (Constant) | 0.892 | 0.073 | 12.260 | 0.000 | ||
Customer satisfaction | 0.636 | 0.019 | 0.742 | 32.982 | 0.000 | 1.188 | |
Emotional loyalty | 0.145 | 0.018 | 0.183 | 8.119 | 0.000 | 1.188 | |
3 | (Constant) | 0.805 | 0.076 | 10.646 | 0.000 | ||
Customer satisfaction | 0.621 | 0.020 | 0.724 | 31.832 | 0.000 | 1.238 | |
Emotional loyalty | 0.125 | 0.018 | 0.158 | 6.785 | 0.000 | 1.290 | |
Social influence | 0.063 | 0.017 | 0.086 | 3.815 | 0.000 | 1.211 |
n | Percentage | ||
---|---|---|---|
Sample | Training | 283 | 72.75% |
Testing | 106 | 27.25% | |
Valid | 369 | 389 | |
Excluded | 1 | 1 | |
Total | 370 | 390 |
Input Layer | Factors | 1 | Customer satisfaction |
2 | Habit | ||
3 | Social influence | ||
4 | Emotional loyalty | ||
Number of units | 48 | ||
Hidden Layer(s) | Number of hidden layers | 2 | |
Number of units in hidden layer 1 a | 9 | ||
Number of units in hidden layer 2 a | 7 | ||
Activation function | Sigmoid | ||
Output Layer(s) | Dependent variables | 1 | Predicted value for MLP predicted value |
Number of units | 5 | ||
Activation function | Softmax | ||
Error function | Cross-entropy |
Training | Cross-entropy error | 13.272 |
Percentage incorrect predictions | 0.0% | |
Stopping rule used | 1 consecutive step(s) with no decrease in error a | |
Testing | Cross-entropy error | 30.578 |
Percentage incorrect predictions | 6.8% |
Model | Variables Entered | Variables Removed | Method |
---|---|---|---|
1 | Customer satisfaction | Stepwise (criteria: probability of F to enter ≤ 0.050, probability of F to remove ≥ 0.100). | |
2 | Emotional loyalty | ||
3 | Social influence |
Model | R | R Square | Adjusted R Square | Standard Error of the Estimate | Change Statistics | Durbin–Watson | ||||
---|---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | ||||||
1 | 0.843 a | 0.710 | 0.710 | 0.32800 | 0.710 | 1754.999 | 1 | 726 | 0.000 | |
2 | 0.855 b | 0.731 | 0.731 | 0.31626 | 0.021 | 55.218 | 1 | 725 | 0.000 | |
3 | 0.859 c | 0.737 | 0.737 | 0.31310 | 0.006 | 15.515 | 1 | 724 | 0.000 | 1.869 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|---|
B | Standard Error | Beta | ||||
1 | (Constant) | 0.836 | 0.071 | 11.801 | 0.000 | |
Customer satisfaction | 0.783 | 0.019 | 0.843 | 41.893 | 0.000 | |
2 | (Constant) | 0.646 | 0.073 | 8.868 | 0.000 | |
Customer satisfaction | 0.724 | 0.020 | 0.779 | 36.741 | 0.000 | |
Emotional loyalty | 0.128 | 0.017 | 0.158 | 7.431 | 0.000 | |
3 | (Constant) | 0.558 | 0.076 | 7.380 | 0.000 | |
Customer satisfaction | 0.710 | 0.020 | 0.764 | 35.834 | 0.000 | |
Emotional loyalty | 0.108 | 0.018 | 0.133 | 6.070 | 0.000 | |
Social influence | 0.062 | 0.016 | 0.083 | 3.939 | 0.000 |
Research Hypothesis | Research Model No. (1) | Research Model No. (2) | Research Model No. (3) |
---|---|---|---|
Consumer satisfaction positively impacts intention to repurchase (H1) | Accept | Accept | Accept |
Social influence positively impacts intention to repurchase (H2) | Reject | Accept | Accept |
Emotional loyalty positively impacts intention to repurchase (H3) | Accept | Accept | Accept |
Consumer habit positively impacts intention to repurchase (H4) | Reject | Reject | Reject |
Research Model No. | 1 | 2 | 3 |
---|---|---|---|
Analysis method | Regression analysis | Regression analysis (number of hidden layers (one)) | Regression analysis (number of hidden layers (two)) |
R Square (0.568) | R Square (0.696) | R Square (0.736) | |
RMSE (0.456) | RMSE (0.332) | RMSE (0.313) | |
(Constant) | 0.780 | 0.805 | 0.558 |
Satisfaction | 0.634 | 0.621 | 0.710 |
Emotional loyalty | 0.185 | 0.125 | 0.108 |
Social influence | - | 0.063 | 0.062 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.J. A Study of Consumer Repurchase Behaviors of Smartphones Using Artificial Neural Network. Information 2020, 11, 400. https://doi.org/10.3390/info11090400
Lee HJ. A Study of Consumer Repurchase Behaviors of Smartphones Using Artificial Neural Network. Information. 2020; 11(9):400. https://doi.org/10.3390/info11090400
Chicago/Turabian StyleLee, Hong Joo. 2020. "A Study of Consumer Repurchase Behaviors of Smartphones Using Artificial Neural Network" Information 11, no. 9: 400. https://doi.org/10.3390/info11090400
APA StyleLee, H. J. (2020). A Study of Consumer Repurchase Behaviors of Smartphones Using Artificial Neural Network. Information, 11(9), 400. https://doi.org/10.3390/info11090400