Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Source
2.2. Methods and Tools
2.3. Mathematical Model
3. Results and Discussion
3.1. Temporal Distribution of the Literature
3.2. Spatial Distribution of the Literature
3.2.1. Country/Regional distribution
3.2.2. Organization Distribution
3.2.3. Publication Distribution
3.2.4. Subject Categories Distribution
3.3. Research Focus Analysis
3.3.1. Literature Cocitation Analysis
3.3.2. Author Cocitation Analysis
3.4. Keyword Co-Occurrence Analysis
3.4.1. Keyword Co-Occurrence Network
3.4.2. Keyword Timeline View
3.5. Research Evolution Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiecek, B. Review on thermal image processing for passive and active thermography. Int. Conf. Eng. Med. Biol. Soc. 2005, 1, 686–689. [Google Scholar]
- Chen, C.H. Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization; World Scientific: Singapore, 2007. [Google Scholar]
- Chen, Y.S.; Hung, Y.; Ng, S.P.; Liu, L. Review and comparison of shearography and active thermography for nondestructive evaluation. Mater. Sci. Eng. R Rep. 2009, 64, 73–112. [Google Scholar] [Green Version]
- He, Y.; Du, B.; Huang, S. Noncontact Electromagnetic Induction Excited Infrared Thermography for Photovoltaic Cells and Modules Inspection. IEEE Trans. Ind. Inf. 2018, 14, 5585–5593. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorostiza, E.M.; Galilea, J.L.; Meca, F.J.; Monzu, D.S.; Zapata, F.E.; Puerto, L.P. Infrared sensor system for mobile-robot positioning in intelligent spaces. Sensors 2011, 11, 5416–5438. [Google Scholar] [CrossRef] [PubMed]
- Vadivambal, R.; Jayas, D.S. Applications of Thermal Imaging in Agriculture and Food Industry–A Review. Food Bioprocess Technol. 2011, 4, 186–199. [Google Scholar] [CrossRef]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.H.; Hong, R.; Jin, K.; Yang, C. Visualization and Bibliometric Analysis of Research Trends on Human Fatigue Assessment. J. Med. Syst. 2018, 42, 179. [Google Scholar] [CrossRef]
- Figueiredo, A.A.A.; Fernandes, H.C.; Guimaraes, G. Experimental approach for breast cancer center estimation using infrared thermography. Infrared Phys. Technol. 2018, 95, 100–112. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Moreno, A.; Puig, D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods. Electronics 2019, 8, 100. [Google Scholar] [CrossRef]
- Adam, M.; Ng, E.Y.K.; Tan, J.H.; Heng, M.L.; Tong, J.W.K.; Acharya, U.R. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput. Biol. Med. 2017, 91, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Cohen, N.J.; Lipman, H.; Brown, C.M.; Molinari, N.O.; Jackson, W.L.; Kirking, H.; Szymanowski, P.; Wilson, T.W.; Salhi, B.A.; et al. Comparison of 3 Infrared Thermal Detection Systems and Self-Report for Mass Fever Screening. Emerg. Infect. Dis. 2010, 16, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.V.C.; Brioschi, M.L.; Dias, F.G.; Parolin, M.B. Normalized methodology for medical infrared imaging. Infrared Phys. Technol. 2009, 52, 42–47. [Google Scholar] [CrossRef]
- Manginas, A.; Andreanidis, E.; Leontiadis, E.; Sfyrakis, P.; Maounis, T.; Degiannis, D.; Alivizatos, P.A.; Cokkinos, D.V. First human application of right ventricular endocardial thermography in transplanted and coronary artery disease patients. J. Invasive Cardiol. 2010, 26, S224. [Google Scholar]
- Jadin, M.S.; Taib, S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography. Infrared Phys. Technol. 2012, 55, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Badulescu, C.; Grediac, M.; Haddadi, H.; Mathias, J.D. Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech. Mater. 2011, 43, 36–53. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhong, J.; Xie, Z. Early detection of spontaneous combustion disaster of sulphide ore stockpile. Teh. Vjesn. 2015, 22, 1579–1587. [Google Scholar]
- Ait-Amokhtar, H.; Fressengeas, C.; Boudrahem, S. The dynamics of Portevin-Le Chatelier bands in an Al-Mg alloy from infrared thermography. Mater. Sci. Eng. A 2008, 488, 540–546. [Google Scholar] [CrossRef]
- Pastor, M.L.; Balandraud, X.; Grediac, M.; Robert, J.L. Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading. Infrared Phys. Technol. 2008, 51, 505–515. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Diagnosis of the three-phase induction motor using thermal imaging. Infrared Phys. Technol. 2017, 81, 7–16. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Diagnostics of stator faults of the single-phase induction motor using thermal images, MoASoS and selected classifiers. Measurement 2016, 93, 86–93. [Google Scholar] [CrossRef]
- Kafieh, R.; Lotfi, T.; Amirfattahi, R. Automatic detection of defects on polyethylene pipe welding using thermal infrared imaging. Infrared Phys. Technol. 2011, 54, 317–325. [Google Scholar] [CrossRef]
- Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E.; Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Env. 2018, 146, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Lerma, J.L.; Cabrelles, M.; Portales, C. Multitemporal thermal analysis to detect moisture on a building facade. Constr. Build. Mater. 2011, 25, 2190–2197. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Jan van Eck, N.; Waltman, L. VOS: A New Method for Visualizing Similarities Between Objects. Adv. Data Anal. 2006, 299–306. [Google Scholar]
- Rogalski, A. Infrare detectors: Status and trends. Prog. Quantum Electron. 2003, 27, 59–210. [Google Scholar] [CrossRef]
- Bruck, H.A.; Rosakis, A.J.; Johnson, W.L. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 1996, 11, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.F. A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imaging 1998, 17, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Senkan, S.M. High-throughput screening of solid-state catalyst libraries. Nature 1998, 394, 350–353. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Zhu, J.; Hua, W. Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis. Scientometrics 2017, 110, 893–914. [Google Scholar] [CrossRef]
- De Salis, A.F.; Saatchi, R.; Dimitri, P. Evaluation of high resolution thermal imaging to determine the effect of vertebral fractures on associated skin surface temperature in children with osteogenesis imperfecta. Med. Biol. Eng. Comput. 2018, 56, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Rastgar-Jazi, M. Analytical and Experimental Solution for Heat Source Located Under Skin: Modeling Chest Tumor Detection in Male Subjects by Infrared Thermography. J. Med. Biol. Eng. 2018, 38, 316–324. [Google Scholar] [CrossRef]
- Mayilsamy, S.; Jeyakumar, S.; Manimaran, A.; Pushpadass, H.A. Infrared thermography to monitor body and udder skin surface temperature differences in relation to subclinical and clinical mastitis condition in Karan Fries (Bos taurus × Bos indicus) crossbred cows. Indian J. Anim. Sci. 2018, 88, 694–699. [Google Scholar]
- Pou, A.; Diago, M.P.; Medrano, H.; Baluja, J.; Tardaguila, J. Validation of thermal indices for water status identification in grapevine. Agric. Water Manag. 2014, 134, 60–72. [Google Scholar] [CrossRef]
- Kordatos, E.Z.; Dassios, K.G.; Aggelis, D.G.; Matikas, T.E. Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission. Mech. Res. Commun. 2013, 54, 14–20. [Google Scholar] [CrossRef]
- Milne, J.M.; Reynolds, W.N. The Non-Destructive Evaluation of Composites and other Materials by Thermal Pulse Video Thermography. In Proceedings of the Thermosense VII: Thermal Infrared Sensing for Diagnostics and Control, Cambridge, MA, USA, 23–26 October 1984; pp. 119–123. [Google Scholar]
- Busse, G.; Wu, D.; Karpen, W. Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 1992, 71, 3962–3965. [Google Scholar] [CrossRef]
- Maldague, X.; Marinetti, S. Pulse phase infrared thermography. J. Appl. Phys. 1996, 79, 2694–2698. [Google Scholar] [CrossRef]
- Favro, L.D.; Han, X.; Ouyang, Z.; Sun, G.; Sui, H.; Thomas, R.L. Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 2000, 71, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.C.; Cheng, T.M.; Chiang, C.H. Defect detection of concrete structures using both infrared thermography and elastic waves. Autom. Constr. 2009, 18, 87–92. [Google Scholar] [CrossRef]
- Kreidberg, L.; Line, M.R.; Bean, J.L.; Stevenson, K.B.J.; Désert, J.-M.; Madhusudhan, N.; Fortney, J.J.; Barstow, J.K.; Henry, G.W.; Williamson, M.H. A detection of water in the transmission spectrum of the hot jupiter wasp-12b and implications for its atmospheric composition. Astrophys. J. 2015, 814, 66. [Google Scholar] [CrossRef]
- Montinaro, N.; Cerniglia, D.; Pitarresi, G. A Numerical Study on Interlaminar Defects Characterization in Fibre Metal Laminates with Flying Laser Spot Thermography. J. Nondestruct. Eval. 2018, 37, 41. [Google Scholar] [CrossRef]
- Tran, H.Q.; Huh, J.; Mac, H.V.; Kang, C. Effects of rebars on the detectability of subsurface defects in concrete bridges using square pulse thermography. Ndt E Int. 2018, 100, 92–100. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction Heat in Solids. Math. Gaz. 1959, 36, 142–143. [Google Scholar] [CrossRef]
- Maldague, P.F. Many-body corrections to the polarizability of the two-dimensional electron gas. Surf. Sci. 1978, 73, 296–302. [Google Scholar] [CrossRef]
Rank | Type of Document | Frequency | Proportion |
---|---|---|---|
1 | Article | 1505 | 93.247 |
2 | Proceedings paper | 116 | 7.187 |
3 | Review | 86 | 5.328 |
4 | Meeting abstract | 17 | 1.053 |
5 | Correction | 2 | 0.124 |
6 | Editorial material | 2 | 0.124 |
7 | Letter | 2 | 0.124 |
8 | Book Review | 1 | 0.062 |
Total | 1731 |
Rank | Organization | Country | TP | P | h-Index | TC | CPP |
---|---|---|---|---|---|---|---|
1 | Centre National de la Recherche Scientifique | French | 63 | 3.903 | 18 | 1360 | 21.59 |
2 | Laval University | Canada | 43 | 2.664 | 15 | 595 | 13.84 |
3 | Tomsk Polytechnic University | Russia | 29 | 1.797 | 9 | 281 | 9.69 |
4 | University of Naples Federico II | Italy | 29 | 1.797 | 16 | 732 | 25.24 |
5 | CEA | French | 28 | 1.735 | 8 | 418 | 14.93 |
6 | Consiglio Nazionale delle Ricerche | Italy | 27 | 1.673 | 9 | 334 | 12.37 |
7 | University of California System | USA | 27 | 1.673 | 17 | 1004 | 37.19 |
8 | Chinese Academy of Sciences | China | 24 | 1.487 | 7 | 183 | 7.63 |
9 | University of Aquila | Italy | 24 | 1.487 | 11 | 250 | 10.42 |
10 | Indian Institute of Technology System | India | 21 | 1.301 | 7 | 115 | 5.48 |
Rank | Journal Title | Country | TP | P | h-Index | TC | CPP |
---|---|---|---|---|---|---|---|
1 | Infrared Physics Technology | Netherlands | 121 | 7.497 | 20 | 1658 | 13.7 |
2 | Ndt & E International | England | 68 | 4.213 | 20 | 1321 | 19.43 |
3 | Sensors | Switzerland | 35 | 2.169 | 9 | 455 | 13 |
4 | Insight | England | 23 | 1.425 | 6 | 113 | 4.91 |
5 | Journal of Nondestructive Evaluation | USA | 23 | 1.425 | 8 | 233 | 10.13 |
6 | Measurement Science and Technology | England | 18 | 1.115 | 6 | 113 | 6.28 |
7 | Construction and Building Materials | England | 17 | 1.053 | 10 | 371 | 21.82 |
8 | Energy and Buildings | Switzerland | 17 | 1.053 | 11 | 628 | 36.94 |
9 | International Journal of Heat and Mass Transfer | England | 17 | 1.053 | 7 | 207 | 12.18 |
10 | International Journal of Thermophysics | USA | 17 | 1.053 | 6 | 106 | 6.24 |
Rank | Research Interest | TP | h | CPP | Rank | Research Interest | TP | h | CPP |
---|---|---|---|---|---|---|---|---|---|
1 | Engineering | 403 | 36 | 14.27 | 16 | Computer Science | 38 | 10 | 17.16 |
2 | Materials Science | 386 | 34 | 13.03 | 17 | Radiology Nuclear Medicine Medical Imaging | 28 | 13 | 24.29 |
3 | Instruments Instrumentation | 280 | 27 | 10.96 | 18 | Plant Sciences | 26 | 15 | 54.46 |
4 | Physics | 280 | 27 | 11.06 | 19 | Food Science Technology | 25 | 10 | 20.84 |
5 | Optics | 171 | 23 | 12.53 | 20 | Geology | 24 | 10 | 16.63 |
6 | Chemistry | 113 | 20 | 11.91 | 21 | Nuclear Science Technology | 24 | 8 | 12.96 |
7 | Mechanics | 90 | 16 | 13.51 | 22 | Polymer Science | 22 | 7 | 6.77 |
8 | Veterinary Sciences | 89 | 20 | 12.25 | 23 | Environmental Sciences Ecology | 20 | 11 | 16.45 |
9 | Thermodynamics | 85 | 16 | 9.78 | 24 | Imaging Science Photographic Technology | 20 | 7 | 24.25 |
10 | Agriculture | 82 | 19 | 14.72 | 25 | Spectroscopy | 18 | 5 | 3.06 |
11 | Construction Building Technology | 65 | 21 | 21.09 | 26 | Surgery | 18 | 8 | 15.56 |
12 | Energy Fuels | 60 | 19 | 18.25 | 27 | Biochemistry Molecular Biology | 17 | 8 | 13.59 |
13 | Science Technology Other Topics | 59 | 18 | 16.59 | 28 | Remote Sensing | 17 | 6 | 11.65 |
14 | Electrochemistry | 50 | 12 | 11.84 | 29 | Automation Control Systems | 16 | 4 | 4.75 |
15 | Astronomy Astrophysics | 41 | 20 | 31.76 | 30 | Geochemistry Geophysics | 16 | 9 | 17.75 |
Rank | Title | Type | Journal | Authors | Year | Citations | IN | CN |
---|---|---|---|---|---|---|---|---|
1 | Infrared detectors: status and trends | Review | Progress in Quantum Electronics | A Rogalski | 2003 | 585 | 1 | 1 |
2 | The dynamic compressive behavior of beryllium bearing bulk metallic glasses | Article | Journal of Materials Research | HA Bruck, et al. | 1996 | 280 | 2 | 1 |
3 | A reappraisal of the use of infrared thermal image analysis in medicine | Article | IEEE Transactions on Medical Imaging | BF Jones | 1998 | 257 | 1 | 1 |
4 | High-throughput screening of solid-state catalyst libraries | Article | Nature | SM Senkan | 1998 | 255 | 1 | 1 |
5 | Medical applications of infrared thermography: A review | Review | Infrared Physics & Technology | J Philip | 2012 | 242 | 1 | 1 |
6 | Infrared thermography for condition monitoring-A review | Review | Infrared Physics & Technology | BB Lahiri, et al. | 2013 | 227 | 1 | 1 |
7 | Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine | Article | Journal of Experimental Botany | HG Jones, et al. | 2002 | 220 | 3 | 2 |
8 | Fatigue limit evaluation of metals using an infrared thermographic technique | Article | Mechanics of Materials | MP Luong | 1998 | 213 | 3 | 1 |
9 | Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation | Article | Plant Journal | S Merlot, et al. | 2002 | 198 | 4 | 1 |
10 | Infrared thermography for building diagnostics | Article | Energy and Buildings | CA Balaras, et al. | 2002 | 198 | 1 | 1 |
Rank | Author | Country | Institute | TP | P | h | TC |
---|---|---|---|---|---|---|---|
1 | X Maldague | Canada | Laval University | 31 | 1.921 | 14 | 502 |
2 | C Ibarra-Castanedo | Canada | Laval University | 29 | 1.797 | 14 | 467 |
3 | S Sfarra | Italy | University of Aquila | 22 | 1.363 | 10 | 233 |
4 | GM Carlomagno | Italy | Univ Naples Federico II | 16 | 0.991 | 11 | 486 |
4 | H Zhang | Canada | Laval University | 16 | 0.991 | 7 | 206 |
6 | NP Avdelidis | Greece | Natl Tech Univ Athens | 15 | 0.929 | 9 | 284 |
6 | C Meola | Italy | Univ Naples Federico II | 15 | 0.929 | 10 | 404 |
6 | Y Wang | China | Harbin Institute of Technology | 15 | 0.929 | 7 | 108 |
9 | R Mulaveesala | Indian | Indian Inst Technol Ropar | 14 | 0.867 | 8 | 202 |
10 | JL Bodnar | French | UNIVERSITE DE REIMS | 13 | 0.805 | 5 | 73 |
10 | S Laguela | Spain | Universidad De Salamanca | 13 | 0.805 | 7 | 185 |
10 | JY Liu | China | Harbin Institute of Technology | 13 | 0.805 | 6 | 87 |
10 | AL Schaefer | Canada | University of Alberta | 13 | 0.805 | 8 | 527 |
10 | VP Vavilov | Russia | Tomsk Polytech University | 13 | 0.805 | 6 | 116 |
Rank | Keywords | Strength | Begin | End | 1990–2018 |
---|---|---|---|---|---|
1 | inspection | 14.0359 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
2 | pulsed thermography | 7.1643 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
3 | nondestructive evaluation | 7.1484 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
4 | stress | 6.6315 | 2011 | 2013 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
5 | nondestructive testing | 6.4173 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
6 | body temperature | 6.0271 | 2013 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂ |
7 | infrared thermography | 5.9422 | 1999 | 2000 | ▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
8 | composite | 5.3071 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
9 | infrared imaging | 4.6667 | 2008 | 2011 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
10 | infrared | 4.4979 | 2005 | 2012 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂ |
11 | thermography | 4.1896 | 2002 | 2003 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
12 | classification | 4.0919 | 2017 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃ |
13 | remote sensing | 4.0919 | 2017 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃ |
14 | lock-in thermography | 4.014 | 2016 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂ |
15 | infrared thermography | 3.8382 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
16 | performance | 3.8301 | 2016 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂ |
17 | blood flow | 3.7882 | 2007 | 2013 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂ |
18 | damage | 3.7776 | 2015 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂▂ |
19 | defect | 3.7195 | 2014 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
20 | diagnosis | 3.6729 | 2015 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂▂ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, R.; Xiang, C.; Liu, H.; Glowacz, A.; Pan, W. Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information 2019, 10, 227. https://doi.org/10.3390/info10070227
Hong R, Xiang C, Liu H, Glowacz A, Pan W. Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information. 2019; 10(7):227. https://doi.org/10.3390/info10070227
Chicago/Turabian StyleHong, Rui, Chenglang Xiang, Hui Liu, Adam Glowacz, and Wei Pan. 2019. "Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies" Information 10, no. 7: 227. https://doi.org/10.3390/info10070227
APA StyleHong, R., Xiang, C., Liu, H., Glowacz, A., & Pan, W. (2019). Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information, 10(7), 227. https://doi.org/10.3390/info10070227