A Hypergraph Data Model for Expert-Finding in Multimedia Social Networks
Abstract
:1. Introduction
2. Related Work
3. Modeling MSNs
3.1. Relationships
- 1.
- such that ,
- 2.
- .
- 1.
- such that ,
- 2.
- .
3.2. Hypergraph-Building
3.3. Centrality Measures for Expert-Finding
4. System Architecture
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hootsuite. Digital in 2018: Q3 Global Digital Statshot. 2018. Available online: https://datareportal.com/reports/digital-2018-q3-global-digital-statshot (accessed on 28 February 2019).
- Schneider, F.; Feldmann, A.; Krishnamurthy, B.; Willinger, W. Understanding Online Social Network Usage from a Network Perspective. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, Chicago, IL, USA, 4–6 November 2009; pp. 35–48. [Google Scholar] [CrossRef]
- Dwyer, C.; Hiltz, S.; Passerini, K. Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace. In Proceedings of the Thirteenth Americas Conference on Information Systems, Keystone, CO, USA, 9–12 August 2007; pp. 1–12. [Google Scholar]
- Richter, D.; Riemer, K.; Brocke, J.V. Internet Social Networking - Research State of the Art and Implications for Enterprise 2.0. Bus. Inf. Syst. Eng. 2011, 3, 89–101. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Multimedia social network modeling: A proposal. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 3–5 February 2016; pp. 448–453. [Google Scholar]
- Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Diffusion algorithms in multimedia social networks: A preliminary model. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Sydney, Australia, 31 July–3 August 2017; pp. 844–851. [Google Scholar]
- INFLUENCE MILLENNIAL GIVING THROUGH SOCIAL MEDIA. Available online: https://www.timothygroup.com/influence-millennial-giving-through-social-media/ (accessed on 29 April 2019).
- Jin, L.; Chen, Y.; Wang, T.; Hui, P.; Vasilakos, A. Understanding user behavior in online social networks: A survey. Commun. Mag. 2013, 51, 144–150. [Google Scholar] [CrossRef]
- Kammenhuber, N.; Luxenburger, J.; Feldmann, A.; Weikum, G. Web Search Clickstreams. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, Rio de Janeriro, Brazil, 25–27 October 2006; pp. 245–250. [Google Scholar] [CrossRef]
- Benevenuto, F.; Rodrigues, T.; Cha, M.; Almeida, V. Characterizing user navigation and interactions in online social networks. Inf. Sci. 2012, 195, 1–24. [Google Scholar] [CrossRef]
- Albanese, M.; Erbacher, R.F.; Jajodia, S.; Molinaro, C.; Persia, F.; Picariello, A.; Sperlì, G.; Subrahmanian, V. Recognizing unexplained behavior in network traffic. In Network Science and Cybersecurity; Springer: Berlin/Heidelberg, Germany, 2014; pp. 39–62. [Google Scholar]
- Egele, M.; Stringhini, G.; Kruegel, C.; Vigna, G. COMPA: Detecting Compromised Accounts on Social Networks. In Proceedings of the 20th Annual Network & Distributed System Security Symposium (NDSS), San Diego, CA, USA, 24–27 February 2013. [Google Scholar]
- Tan, E.; Guo, L.; Chen, S.; Zhang, X.; Zhao, Y. UNIK: Unsupervised Social Network Spam Detection. In Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, Turin, Italy, 22–26 October 2018; pp. 479–488. [Google Scholar] [CrossRef]
- Wang, G.; Konolige, T.; Wilson, C.; Wang, X.; Zheng, H.; Zhao, B.Y. You are how you click: Clickstream analysis for Sybil detection. In Proceedings of the 22nd USENIX Conference on Security (SEC), Washington, DC, USA, 14–16 August 2013; pp. 241–256. [Google Scholar]
- Chu, Z.; Widjaja, I.; Wang, H. Detecting Social Spam Campaigns on Twitter. In Applied Cryptography and Network Security; Bao, F., Samarati, P., Zhou, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7341, pp. 455–472. [Google Scholar]
- Akoglu, L.; Faloutsos, C. Anomaly, Event, and Fraud Detection in Large Network Datasets. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM ’13), Melbourne, Australia, 4–8 February 2013; pp. 773–774. [Google Scholar] [CrossRef]
- Nayak, J.; Naik, B.; Behera, H. Fuzzy C-means (FCM) clustering algorithm: A decade review from 2000 to 2014. In Computational Intelligence in Data Mining-Volume 2; Springer: Berlin/Heidelberg, Germany, 2015; pp. 133–149. [Google Scholar]
- Mezzanzanica, M.; Mercorio, F.; Cesarini, M.; Moscato, V.; Picariello, A. GraphDBLP: A system for analysing networks of computer scientists through graph databases. Multimed. Tools Appl. 2018, 77, 1–32. [Google Scholar] [CrossRef]
- Lovaglio, P.G.; Mezzanzanica, M. Classification of longitudinal career paths. Qual. Quant. 2013, 47, 989–1008. [Google Scholar] [CrossRef]
- Mezzanzanica, M.; Boselli, R.; Cesarini, M.; Mercorio, F. Data quality sensitivity analysis on aggregate indicators. In Proceedings of the International Conference on Data Technologies and Applications (DATA 2012), Rome, Italy, 25–27 July 2012; pp. 97–108. [Google Scholar]
- Viswanath, B.; Bashir, M.A.; Crovella, M.; Guha, S.; Gummadi, K.P.; Krishnamurthy, B.; Mislove, A. Towards Detecting Anomalous User Behavior in Online Social Networks. In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 223–238. [Google Scholar]
- Ye, N. A Markov Chain Model of Temporal Behavior for Anomaly Detection. In Proceedings of the 2000 IEEE Workshop on Information Assurance and Security, West Point, NY, USA, 6–7 June 2000; pp. 171–174. [Google Scholar]
- Anderson, B.; Quist, D.; Neil, J.; Storlie, C.; Lane, T. Graph-based malware detection using dynamic analysis. J. Comput. Virol. 2011, 7, 247–258. [Google Scholar] [CrossRef]
- Albanese, M.; Molinaro, C.; Persia, F.; Picariello, A.; Subrahmanian, V. Discovering the Top-k Unexplained Sequences in Time-Stamped Observation Data. IEEE Trans. Knowl. Data Eng. 2014, 26, 577–594. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, V.; Picariello, A.; Sperlí, G. Kira: A system for knowledge-based access to multimedia art collections. In Proceedings of the 2017 IEEE 11th International Conference on Semantic Computing (ICSC), Diego, CA, USA, 30 January–1 February 2017; pp. 338–343. [Google Scholar]
- Albanese, M.; Moscato, V.; Picariello, A.; Subrahmanian, V.S.; Udrea, O. Detecting Stochastically Scheduled Activities in Video. In Proceedings of the 2007 International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 6–12 January 2007; pp. 1802–1807. [Google Scholar]
- Albanese, M.; Molinaro, C.; Persia, F.; Picariello, A.; Subrahmanian, V.S. Finding Unexplained Activities in Video. In Proceedings of the 2011 International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 16–22 July 2011; pp. 1628–1634. [Google Scholar]
- Albanese, M.; Chellappa, R.; Moscato, V.; Picariello, A.; Subrahmanian, V.; Turaga, P.; Udrea, O. A constrained probabilistic petri net framework for human activity detection in video. IEEE Trans. Multimed. 2008, 10, 982–996. [Google Scholar] [CrossRef]
- Colace, F.; De Santo, M.; Greco, L.; Amato, F.; Moscato, V.; Picariello, A. Terminological ontology learning and population using latent dirichlet allocation. J. Vis. Lang. Comput. 2014, 25, 818–826. [Google Scholar] [CrossRef]
- Boccignone, G.; Chianese, A.; Moscato, V.; Picariello, A. Context-sensitive queries for image retrieval in digital libraries. J. Intell. Inf. Syst. 2008, 31, 53–84. [Google Scholar] [CrossRef]
- Fang, Q.; Sang, J.; Xu, C.; Rui, Y. Topic-sensitive influencer mining in interest-based social media networks via hypergraph learning. IEEE Trans. Multimed. 2014, 16, 796–812. [Google Scholar] [CrossRef]
Element | Number |
---|---|
Crawled User | 99,405 |
Annotations | 10,936,545 |
Items | 1,393,559 |
Tags | 281,818 |
Groups | 66,429 |
Dataset | Vertices | Hyperedges | ||
---|---|---|---|---|
Users | Topics | Multimedia Objects | ||
Last.FM | 99,405 | 10,203 | 1,393,559 | 1,558,233 |
MSNTUR - PR | 0.49 | 0.59 |
MSNTUR - KS | 0.66 | 0.79 |
MSNTUR - TSIM | 0.69 | 0.80 |
MSNTUR - HR | 0.81 | 0.92 |
PR - HR | 0.71 | 0.75 |
KS - HR | 0.68 | 0.83 |
TSIM - HR | 0.75 | 0.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, F.; Cozzolino, G.; Sperlì, G. A Hypergraph Data Model for Expert-Finding in Multimedia Social Networks. Information 2019, 10, 183. https://doi.org/10.3390/info10060183
Amato F, Cozzolino G, Sperlì G. A Hypergraph Data Model for Expert-Finding in Multimedia Social Networks. Information. 2019; 10(6):183. https://doi.org/10.3390/info10060183
Chicago/Turabian StyleAmato, Flora, Giovanni Cozzolino, and Giancarlo Sperlì. 2019. "A Hypergraph Data Model for Expert-Finding in Multimedia Social Networks" Information 10, no. 6: 183. https://doi.org/10.3390/info10060183
APA StyleAmato, F., Cozzolino, G., & Sperlì, G. (2019). A Hypergraph Data Model for Expert-Finding in Multimedia Social Networks. Information, 10(6), 183. https://doi.org/10.3390/info10060183