Similarity Measures of Linguistic Cubic Hesitant Variables for Multiple Attribute Group Decision-Making
Abstract
:1. Introduction
2. The Concept of Linguistic Cubic Hesitant Variables
3. Cosine Measures of LCHVs
4. MAGDM Approach Based on Cosine Similarity Measures of LCHVs
5. Illustrative Example
5.1. Illustrative Example
5.2. Related Comparison
5.3. Extension Analysis
6. Sensitivity Analysis to Change Weights
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chatterjee, P.; Mondal, S.; Boral, S. A novel hybrid method for non-traditional machining process selection using factor relationship and Multi-Attributive Border Approximation Method. Facta Univ. Ser. Mech. Eng. 2017, 15, 439–456. [Google Scholar] [CrossRef]
- Dragan, P.; Ibrahim, B.; Korica, S.; Radojko, O. A novel approach for the selection of power generation technology using an linguistic neutrosophic combinative distance-based assessment (CODAS) method: A case study in Libya. Energies 2018, 11, 2489. [Google Scholar]
- Liu, F.; Wu, G.A.; Vesko, L.; Milena, V. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E.; Verdegay, L. A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 1996, 79, 73–87. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Xu, Z.S. A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 2004, 166, 19–30. [Google Scholar] [CrossRef]
- Xu, Z.S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 2006, 15, 593–604. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of evidence. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2010, 18, 287–304. [Google Scholar] [CrossRef]
- Xu, Y.J.; Merigó, J.M.; Wang, H.M. Linguistic power aggregation operators and their application to multiple attribute group decision making. Appl. Math. Model. 2012, 36, 5427–5444. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M.; Palacios-Marqués, D. Linguistic group decision making with induced aggregation operators and probabilistic information. Appl. Soft Comput. 2014, 24, 669–678. [Google Scholar] [CrossRef]
- Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [Google Scholar] [CrossRef]
- Xu, Z.S. Induced uncertain linguistic OWA operators applied to group decision making. Inf. Sci. 2006, 7, 231–238. [Google Scholar] [CrossRef]
- Wei, G.W. Uncertain linguistic hybrid geometric mean operator and its application to group decision making under uncertain linguistic environment. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2009, 17, 251–267. [Google Scholar] [CrossRef]
- Peng, B.; Ye, C.; Zeng, S. Uncertain pure linguistic hybrid harmonic averaging operator and generalized interval aggregation operator based approach to group decision making. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2012, 36, 175–181. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision-making method based on linguistic cubic variables. J. Intell. Fuzzy Syst. 2018, 34, 2351–2361. [Google Scholar] [CrossRef]
- Lu, X.P.; Ye, J. Dombi aggregation operators of linguistic cubic variables for multiple attribute decision making. Information 2018, 9, 188. [Google Scholar] [CrossRef]
- Ye, J.; Cui, W.H. Multiple Attribute Decision-Making Method Using Linguistic Cubic Hesitant Variable. Algorithms 2018, 11, 135. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z. Consistency Measures for Hesitant Fuzzy Linguistic Preference Relations. IEEE Trans. Fuzzy Syst. 2014, 22, 35–45. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X.J.; Merigó, J.M. Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2015, 76, 127–138. [Google Scholar] [CrossRef]
- Ye, J. Multiple-attribute Decision-Making Method under a Single-Valued Neutrosophic Hesitant Fuzzy Environment. J. Intell. Syst. 2014, 24, 23–36. [Google Scholar] [CrossRef]
- Ye, J. Multiple Attribute Decision-Making Methods Based on the Expected Value and the Similarity Measure of Hesitant Neutrosophic Linguistic Numbers. Cogn. Comput. 2018, 10, 454–463. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers. Neutrosophic Sets Syst. 2014, 8, 47–57. [Google Scholar]
- Mahmood, T.; Ye, J.; Khan, Q. Vector similarity measures for simplified neutrosophic hesitant fuzzy set and their applications. J. Inequal. Spec. Funct. 2016, 7, 176–194. [Google Scholar]
- Shi, L.L.; Ye, J. Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information 2017, 8, 117. [Google Scholar] [Green Version]
- Lu, Z.K.; Ye, J. Cosine Measures of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making. Symmetry 2017, 9, 121. [Google Scholar] [Green Version]
- Cui, W.H.; Ye, J. Multiple-Attribute Decision-Making Method Using Similarity Measures of Hesitant Linguistic Neutrosophic Numbers Regarding Least Common Multiple Cardinality. Symmetry 2018, 10, 330. [Google Scholar] [CrossRef]
- Saaty, T.L. Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Gabus, A.; Fontela, E. World Problems an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Centre: Geneva, Switzerland, 1972; pp. 1–8. [Google Scholar]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Dragan, P.; Željko, S.; Siniša, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar]
- Lashko, S.I.; Lashko, T.A. The selection of wagons for the internal transport of a logistics company: A novel approach based on rough BWM and rough SAW methods. Symmetry 2017, 9, 264. [Google Scholar]
- Stević, Ž.; Pamučar, D.; Subotić, M.; Antuchevičiene, J.; Zavadskas, E. The location selection for round about construction using Rough BWM -Rough WASPAS approach based on a new Rough Hamy aggregator. Sustainability 2017, 10, 2817. [Google Scholar] [CrossRef]
- Dragan, P.; Željko, S.; Edmundas, K.Z. Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Appl. Soft Comput. 2018, 67, 141–163. [Google Scholar]
- Dragan, P.; Darko, B.; Aca, R. Multi-criteria decision making: An example of sensitivity analysis. Serb. J. Manag. 2017, 11, 1–27. [Google Scholar]
- Irik, M.; Dragan, P. A sensitivity analysis in MCDM problems: A statistical approach. Decis. Mak. Appl. Manag. Eng. 2018, 1, 51–80. [Google Scholar]
MAGDM | Similarity or Score | Ranking Order | The Best |
---|---|---|---|
0.8644, 0.8358, 0.9102, 0.9254 | V4 | ||
0.9833, 0.9849, 0.9911, 0.9903 | V3 | ||
LCHVWAA3 [18] | 5.3666, 5.3228, 5.8822, 6.1173 | V4 | |
LCHVWGA4 [18] | 5.3172, 5.0878, 5.8428, 6.0388 | V4 |
Distance Similarity | Result | Included Angle Similarity | Result |
---|---|---|---|
0.9999 | 0.9831 | ||
0.9999 | 0.9831 | ||
0.9839 | 0.9839 | ||
0.9851 | 0.9839 |
Scenarios | Attribute Weight | ||
---|---|---|---|
A1 | A2 | A3 | |
S-1: Uniform of Weight | 0.33 | 0.33 | 0.33 |
S-2: Priority of Attribute A1 | 0.8 | 0.1 | 0.1 |
S-3: Priority of Attribute A2 | 0.1 | 0.8 | 0.1 |
S-4: Priority of Attribute A3 | 0.1 | 0.1 | 0.8 |
S-5: Priority of Attribute A1, A2 | 0.4 | 0.4 | 0.2 |
S-6: Priority of Attribute A2, A3 | 0.2 | 0.4 | 0.4 |
S-7: Priority of Attribute A1, A3 | 0.4 | 0.2 | 0.4 |
S-8: Given weight | 0.45 | 0.3 | 0.25 |
Alternative | Alternatives Ranking by Scenario | |||||||
---|---|---|---|---|---|---|---|---|
S-1 | S-2 | S-3 | S-4 | S-5 | S-6 | S-7 | S-8 | |
V1 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 |
V2 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 4 |
V3 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
V4 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
Alternative | Alternatives Ranking by Scenario | |||||||
---|---|---|---|---|---|---|---|---|
S-1 | S-2 | S-3 | S-4 | S-5 | S-6 | S-7 | S-8 | |
V1 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
V2 | 3 | 4 | 2 | 2 | 3 | 3 | 3 | 3 |
V3 | 2 | 2 | 1 | 3 | 1 | 1 | 2 | 1 |
V4 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Ye, J. Similarity Measures of Linguistic Cubic Hesitant Variables for Multiple Attribute Group Decision-Making. Information 2019, 10, 168. https://doi.org/10.3390/info10050168
Lu X, Ye J. Similarity Measures of Linguistic Cubic Hesitant Variables for Multiple Attribute Group Decision-Making. Information. 2019; 10(5):168. https://doi.org/10.3390/info10050168
Chicago/Turabian StyleLu, Xueping, and Jun Ye. 2019. "Similarity Measures of Linguistic Cubic Hesitant Variables for Multiple Attribute Group Decision-Making" Information 10, no. 5: 168. https://doi.org/10.3390/info10050168
APA StyleLu, X., & Ye, J. (2019). Similarity Measures of Linguistic Cubic Hesitant Variables for Multiple Attribute Group Decision-Making. Information, 10(5), 168. https://doi.org/10.3390/info10050168