Unlocking the Potential of Reclaimed Water: Analysis of the Challenges and Market Size as a Strategic Solution for Water Scarcity in Europe
Abstract
1. Introduction
European Regulatory Framework
2. Methodology
3. Results and Discussion
3.1. Water Scarcity in Europe
3.2. Freshwater Resource Availability and Use
3.3. Emerging Contaminants and Microbial Risks in Reclaimed Water
3.4. Challenges in Current Wastewater Treatment
3.5. Wastewater Treatment and Reuse
3.6. Regional Analysis of Treated and Reclaimed Wastewater
3.7. Estimation of the Potential Market
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
AOPs | Advanced oxidation processes |
ARB | Antibiotic-resistance bacteria |
ARGs | Antibiotic resistance genes |
BOD5 | 5-day bochemical oxygen demand |
E. coli | Escherichia coli |
EPs | Emerging pollutants |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. |
EEA | European Environment Agency |
EU | European Union |
IAS | Individual or alternative systems |
NC | Not connected to an urban and other wastewater treatment plants |
NbS | Nature-based solutions |
PFAS | Per- and Polyfluoroalkyl Substances |
PT | Primary treatment |
RD | Royal Decree |
ROS | Reactive oxygen species |
SDGs | United Nations Sustainable Development Goals |
ST | Secondary treatment |
TT | Tertiary treatment |
uPBTs | Ubiquitous, persistent, bioaccumulative and toxic substances |
UV | Ultraviolet |
UWWTD | Urban Waste Water Treatment Directive |
UWWTPs | Urban wastewater treatment plants |
WEI+ | Water Exploitation Index Plus |
WFD | Water Framework Directive |
WHO | World Health Organization |
WWTPs | Wastewater treatment plants |
References
- Yang, J.; Monnot, M.; Ercolei, L.; Moulin, P. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. Membranes 2020, 10, 131. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in china: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86. [Google Scholar] [CrossRef] [PubMed]
- Okun, D. Water reclamation and unrestricted nonpotable reuse: A new tool in urban water management. Annu. Rev. Public Health 2000, 21, 223–245. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Liu, Y. Water reclamation and reuse. Water Environ. Res. 2020, 92, 1701. [Google Scholar] [CrossRef] [PubMed]
- Vo, P.; Ngo, H.; Guo, W.; Zhou, J.; Nguyen, P.; Listowski, A.; Wang, X. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total Environ. 2014, 494–495, 9–17. [Google Scholar]
- Trần, N.; Ngo, H.; Urase, T.; Gin, K. A critical review on characterization strategies of organic matter for wastewater and water treatment processes. Bioresour. Technol. 2015, 193, 523. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Yan, X.; Zhu, Q.; Liao, C. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. Environ. Pollut. 2019, 254, 113020. [Google Scholar] [CrossRef]
- Sano, D.; Amarasiri, M.; Hata, A.; Watanabe, T.; Katayama, H. Risk management of viral infectious diseases in wastewater reclamation and reuse: Review. Environ. Int. 2016, 91, 220. [Google Scholar] [CrossRef]
- Rizzo, L.; Gernjak, W.; Krzemiński, P.; Malato, S.; McArdell, C.; Pérez, J.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in eu countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef]
- Hong, P.; Mantilla-Calderon, D.; Wang, C. Metagenomics as a tool to monitor reclaimed-water quality. Appl. Environ. Microbiol. 2020, 86, e00724-20. [Google Scholar] [CrossRef]
- Arnold, R.; Sáez, A.; Snyder, S.; Maeng, S.; Lee, C.; Woods, G.; Choi, H. Direct potable reuse of reclaimed wastewater: It is time for a rational discussion. Rev. Environ. Health 2012, 27, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.; Chefetz, B.; Abdeen, Z.; Boxall, A. Emerging investigator series: Towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process. Impacts 2019, 21, 605–622. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. Membranes 2020, 10, 281. [Google Scholar] [CrossRef]
- Wirth, M.; Vobruba, T.; Hartl, M.; Kisser, J. Potential nutrient conversion using nature-based solutions in cities and utilization concepts to create circular urban food systems. Circ. Econ. Sustain. 2021, 1, 1147–1164. [Google Scholar] [CrossRef]
- Tompkins, D.; Bumbac, C.; Clifford, E.; Dussaussois, J.B.; Hannon, L.; Salvadó, V.; Schellenberg, T. EU Horizon 2020 research for a sustainable future: INNOQUA—A Nature-Based Sanitation Solution. Water 2019, 11, 2461. [Google Scholar] [CrossRef]
- Levin, R.; Epstein, P.; Ford, T.; Harrington, W.; Olson, E.; Reichard, E.U.S. drinking water challenges in the twenty-first century. Environ. Health Perspect. 2002, 110 (Suppl. S1), 43. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Curr. Situat. Perspectives. Water 2019, 11, 1551. [Google Scholar]
- United Nations. The United Nations World Water Development Report 2024. In Water for Prosperity and Peace; UNESCO: Paris, France, 2024. [Google Scholar]
- Malinauskaite, J.; Delpech, B.; Montorsi, L.; Venturelli, M.; Gernjak, W.; Abily, M.; Stepišnik Perdih, T.; Nyktari, E.; Jouhara, H. Wastewater Reuse in the EU and Southern European Countries: Policies, Barriers and Good Practices. Sustainability 2024, 16, 11277. [Google Scholar] [CrossRef]
- Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC). 1 January 2014. Available online: http://data.europa.eu/eli/dir/1991/271/2014-01-01/eng (accessed on 28 May 2025).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 20 November 2014. Available online: http://data.europa.eu/eli/dir/2000/60/2014-11-20/eng (accessed on 28 May 2025).
- Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse (Text with EEA Relevance). OJ L, vol. 177, 25 May 2020. Available online: http://data.europa.eu/eli/reg/2020/741/oj/eng (accessed on 28 May 2025).
- Maffettone, R.; Manoli, K.; Drei, P.; Cacciatori, C.; Bellini, R.; Gawlik, B.M. Water reuse in the European Union: Risk Management approach according to the Regulation (EU) 2020/741. In Water Reuse and Unconventional Water Resources; Lecture Notes in Chemistry; Springer: Cham, Switzerland, 2024; pp. 413–442. [Google Scholar] [CrossRef]
- Real Decreto 1085/2024, de 22 de Octubre, por el que se Aprueba el Reglamento de Reutilización del Agua y se Modifican Diversos Reales Decretos que Regulan la Gestión del Agua. Boletín Oficial del Estado, 23 de Octubre de 2024. Available online: https://www.boe.es/eli/es/rd/2024/10/22/1085 (accessed on 28 May 2025).
- Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast) (Text with EEA Relevance). 12 December 2024. Available online: http://data.europa.eu/eli/dir/2024/3019/2024-12-12/eng (accessed on 28 May 2025).
- European Environment Agency. Water Scarcity Conditions in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/use-of-freshwater-resources-in-europe-1 (accessed on 1 April 2025).
- European Environment Agency. Drought Impact on Ecosystems in Europe—8th Environment Action Programme. Available online: https://www.eea.europa.eu/en/analysis/indicators/drought-impact-on-ecosystems-in-europe (accessed on 1 April 2025).
- Grizzetti, B.; Vigiak, O.; Udias, A.; Bisselink, B.; Pistocchi, A.; Bouraoui, F.; Malagó, A.; Aloe, A.; Zanni, M.; Weiss, F.; et al. A European Assessment of Freshwater Availability and Nutrient Pollution—Historical Analysis and Scenarios Developed in the Project Blue2.2; JRC130025; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- World Resources Institute. Aqueduct Water Risk Atlas. Available online: https://www.wri.org/data/aqueduct-water-risk-atlas (accessed on 28 May 2025).
- European Environment Agency. Water use in Europe—Quantity and Quality Face Big Challenges. Available online: https://www.eea.europa.eu/signals-archived/signals-2018-content-list/articles/water-use-in-europe-2014#1 (accessed on 12 May 2025).
- Water Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Water_statistics (accessed on 8 May 2025).
- Renewable Freshwater Resources—Long Term with Annual Averages. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wat_ltaa/default/table?lang=en (accessed on 8 May 2025).
- Water Abstraction by Source and Economic Sector in Europe. European Environment Agency’s Home Page. Available online: https://www.eea.europa.eu/en/analysis/indicators/water-abstraction-by-source-and (accessed on 5 May 2025).
- World Health Organization. State of the World’s Drinking Water: An Urgent Call to Action to Accelerate Progress on Ensuring Safe Drinking Water for All, 1st ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Verala Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Matinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- World Health Organization, FAO & OIE. Technical Brief on Water, Sanitation, Hygiene and Wastewater Management to Prevent Infections and Reduce the Spread of Antimicrobial Resistance (AMR); World Health Organization, FAO & OIE: Geneva, Switzerland, 2022; ISBN 978-92-4-000641-6. [Google Scholar]
- European Centre for Disease Prevention and Control. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020. Available online: https://bit.ly/473CND4 (accessed on 1 April 2025).
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.-H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Umar, M. From Conventional Disinfection to Antibiotic Resistance Control—Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. Int. J. Environ. Res. Public Health 2022, 19, 1636. [Google Scholar] [CrossRef] [PubMed]
- Pharmaceutical Residues in Hospital Wastewater: A Neglected Threat to Environmental and Human Health—Five Case Studies from European Hospitals. Available online: https://europe.noharm.org/sites/default/files/documents-files/6831/14-07-2021_Pharmaceutical-residues-in-hospital-wastewater-FINAL.pdf (accessed on 14 June 2025).
- Pham, M.P.T.; Castle, J.W.; Rodgers, J.H., Jr. Application of water quality guidelines and water quantity calculations to decisions for beneficial use of treated water. Appl. Water Sci. 2011, 1, 85–101. [Google Scholar] [CrossRef]
- Busgang, A.; Friedler, E.; Gilboa, Y.; Gross, A. Quantitative microbial risk analysis for various bacterial exposure scenarios involving greywater reuse for irrigation. Water 2018, 10, 413. [Google Scholar] [CrossRef]
- Chaudhry, R.M.; Hamilton, K.A.; Haas, C.N.; Nelson, K.L. Drivers of microbial risk for direct potable reuse and de facto reuse treatment schemes: The impacts of source water quality and blending. Int. J. Environ. Res. Public Health 2017, 14, 635. [Google Scholar] [CrossRef]
- Kusumawardhana, A.; Zlatanovic, L.; Bosch, A.; van Der Hoek, J.P. Microbiological health risk assessment of water conservation strategies: A case study in Amsterdam. Int. J. Environ. Res. Public Health 2021, 18, 2595. [Google Scholar] [CrossRef]
- Fabregat, V.; Pagán, J.M. Technical–Economic Feasibility of a New Method of Adsorbent Materials and Advanced Oxidation Techniques to Remove Emerging Pollutants in Treated Wastewater. Water 2024, 16, 814. [Google Scholar] [CrossRef]
- European Environment Agency. Beyond Water Quality—Sewage Treatment in a Circular Economy; EEA Report, No 05/2022; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-9480-478-5. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A review on emerging pollutants in the water environment: Existences, health effects and treatment processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Fabregat, V.; Pagán, J.M. A Green Chemistry and Energy- and Cost-Effective Approach in Innovative Advanced Oxidation Processes Through Photoactive Microgels for Sustainable Applications. Sustainability 2025, 17, 2331. [Google Scholar] [CrossRef]
- Fabregat, V. Enhancing Emerging Pollutant Removal in Industrial Wastewater: Validation of a Photocatalysis Technology in Agri-Food Industry Effluents. Appl. Sci. 2024, 14, 6308. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Crini, G. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Fabregat, V. Exploring the Role of pH and Solar Light-Driven Decontamination with Singlet Oxygen in Removing Emerging Pollutants from Agri-Food Effluents: The Case of Acetamiprid. Physchem 2025, 5, 9. [Google Scholar] [CrossRef]
- Rossi, R. Irrigation in EU Agriculture; PE 644.216; European Parliamentary Research Service (EPRS): Brussels, Belgium, 2019. [Google Scholar]
- Real Decreto 1620/2007, de 7 de Diciembre, por el que se Establece El Régimen Jurídico de la Reutilización de las Aguas Depuradas. Boletín Oficial del Estado, 8 de Diciembre de 2007, pp. 50639–50661. Available online: https://www.boe.es/eli/es/rd/2007/12/07/1620 (accessed on 14 June 2025).
- European Environment Agency—Use of Freshwater Resources in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources-3/assessment-4#tab-used-in-publications (accessed on 2 May 2025).
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU. A Hydro-Economic Analysis; EUR 28980 EN; JRC109870; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-77210-8. [Google Scholar] [CrossRef]
- Chemicals in Europe Surface Water and Groundwater (Signal). Available online: https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/chemicals-in-european-surface-water-and-groundwater-bodies (accessed on 11 June 2025).
- Urban Wastewater—European Commission. Available online: https://environment.ec.europa.eu/topics/water/urban-wastewater_en (accessed on 27 May 2025).
- Urban Waste Water Treatment Directive—WISE Freshwater. Available online: https://water.europa.eu/freshwater/europe-freshwater/urban-waste-water-treatment (accessed on 10 June 2025).
- European Environment Agency. Europe’s State of Water. The Need for Improved Water Resilience; EEA Report 07/2024; European Environment Agency: Copenhagen, Denmark, 2024; ISBN 978-92-9480-653-6. [Google Scholar] [CrossRef]
- Büttner, O.; Jawitz, J.W.; Birk, S.; Borchardt, D. Why wastewater treatment fails to protect stream ecosystems in Europe. Water Res. 2022, 217, 118382. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Population Connected to at Least Secondary Wastewater Treatment (Indicator). Available online: https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/population-connected-to-at-least-secondary-wastewater-treatment#:~:text=As%20a%20result%2C%20by%202022,in%20European%20surface%20water%20bodies (accessed on 29 May 2025).
- Population Connected to Wastewater Treatment Plants. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ww_con__custom_15836708/default/table?lang=en (accessed on 18 March 2025).
- Environment and Natural Resources Department—European Investment Bank (EIB) Projects Directorate. Wastewater as a Resource. Available online: https://www.eib.org/files/publications/wastewater_as_a_resource_en.pdf (accessed on 12 June 2025).
- The New Regulation Aims to Encourage and Facilitate Water Reuse in the EU. Available online: https://interreg-baltic.eu/project-posts/the-new-regulation-aims-to-encourage-and-facilitate-water-reuse-in-the-eu/ (accessed on 12 June 2025).
- Country Profiles on Urban Waste Water Treatment—WISE Freshwater. Available online: https://water.europa.eu/freshwater/countries/uwwt (accessed on 12 June 2025).
- Maher, T.; Antar, C.; Alshrari, A.; Ali, H. Advancing Environmental Sustainability and Consumption Security through Wastewater Reuse in Arid Regions. Eur. J. Sustain. Dev. 2025, 14, 797. [Google Scholar] [CrossRef]
Country | Internal Flow 1 | External Flow | Total Freshwater Resource | Freshwater Resources (m3/Inhabitants) |
---|---|---|---|---|
Austria | 56,700 | 29,300 | : | : |
Belgium | 11,288 | 10,563 | 25,011 | 2141 |
Bulgaria | 15,884 | 83,957 | 99,841 | 15,029 |
Croatia | 24,530 | 93,783 | 118,313 | 30,678 |
Cyprus | 374 | 0 | 374 | 409 |
Czech rep | 14,372 | 829 | 15,201 | 1424 |
Denmark | 16,340 | 0 | 16,340 | 2768 |
Estonia | 12,347 | : | 12,374 | 9153 |
Finland | 107,000 | 3200 | 110,000 | 19,798 |
France | 200,860 | 11,000 | 206,236 | 3030 |
Germany | 104,000 | 69,000 | 173,000 | 2064 |
Greece | 60,000 | 12,000 | 72,000 | 6898 |
Hungary | 5580 | 91,500 | 97,080 | : |
Ireland | 51,308 | 3526 | 54,834 | 10,615 |
Italy | 133,455 | : | 133,455 | : |
Latvia | 19,647 | 16,992 | 36,639 | 19,495 |
Lithuania | 14,018 | 8552 | 22,539 | 7960 |
Luxembourg | 905 | 739 | 1644 | 2517 |
Malta | 83 | 0 | 83 | 156 |
Netherlands | 9706 | 78,355 | 88,061 | 4975 |
Poland | 50,319 | 7504 | 57,823 | 1570 |
Portugal | 38,593 | 35,000 | 73,593 | 7154 |
Romania | 39,285 | 284 | 39,569 | 2077 |
Slovakia | 14,081 | 66,086 | 80,192 | 14,763 |
Slovenia | 16,422 | 15,074 | 31,496 | 14,912 |
Spain | 100,396 | 0 | 100,396 | 2102 |
Sweden | 170,330 | 14,678 | 194,750 | 18,570 |
UK | 161,369 | 6454 | 172,861 | 2935 |
Country | m3/y | Country | m3/y |
---|---|---|---|
Austria | 1.526 × 109 | Italy | 5.694 × 109 |
Belgium | 6.716 × 108 | Latvia | 1.095 × 108 |
Bulgaria | 4.891 × 108 | Lithuania | 1.898 × 108 |
Croatia | 3.395 × 108 | Luxembourg | 4.745 × 107 |
Cyprus | 7.665 × 107 | Malta | 4.745 × 107 |
Czech Republic | 6.789 × 108 | Netherland | 1.445 × 109 |
Denmark | 8.797 × 108 | Norway | 5.877 × 108 |
Estonia | 1.095 × 108 | Poland | 2.716 × 109 |
Finland | 4.052 × 108 | Portugal | 9.527 × 108 |
France | 5.347 × 109 | Romania | 1.448 × 109 |
Germany | 8.023 × 109 | Slovakia | 2.957 × 108 |
Greece | 8.697 × 108 | Slovenia | 1.168 × 108 |
Hungary | 9.089 × 108 | Spain | 4.606 × 109 |
Ireland | 3.760 × 108 | Sweden | 9.344 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabregat, V. Unlocking the Potential of Reclaimed Water: Analysis of the Challenges and Market Size as a Strategic Solution for Water Scarcity in Europe. Challenges 2025, 16, 43. https://doi.org/10.3390/challe16030043
Fabregat V. Unlocking the Potential of Reclaimed Water: Analysis of the Challenges and Market Size as a Strategic Solution for Water Scarcity in Europe. Challenges. 2025; 16(3):43. https://doi.org/10.3390/challe16030043
Chicago/Turabian StyleFabregat, Víctor. 2025. "Unlocking the Potential of Reclaimed Water: Analysis of the Challenges and Market Size as a Strategic Solution for Water Scarcity in Europe" Challenges 16, no. 3: 43. https://doi.org/10.3390/challe16030043
APA StyleFabregat, V. (2025). Unlocking the Potential of Reclaimed Water: Analysis of the Challenges and Market Size as a Strategic Solution for Water Scarcity in Europe. Challenges, 16(3), 43. https://doi.org/10.3390/challe16030043