Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Background History of Rare Earth Metals
4. Analysis and Exploration of Rare Earth Metals
5. Applications of Rare Earth Metals
6. Environmental Challenges Associated with Mining Rare Earth Metals
7. Impact of Rare Earth Metals on Global Health
7.1. Impacts on Environmental Health
7.2. Impacts on Human Health
7.3. Impacts on Animal Health
8. REMs in Africa: The Imperative for Greater Research Coverage
9. Planetary Health: A Holistic Approach for Addressing REMs Health Hazards
10. Recommendations
- Promoting sustainable mining practices: encourage the adoption of sustainable practices that minimize environmental impact, such as reducing waste and conserving water and renewable energy sources. This can help reduce the environmental impact of REM extraction and processing in Africa.
- Increasing efficiency and recycling: Increase efficiency in the use of REMs by designing products that use fewer rare-earth materials or recycling existing resources. This can help reduce the demand for new REM extraction and processing.
- Encouraging research and innovation: explore alternative materials that can be used in place of REMs in high-tech products. For example, research is being conducted on using organic polymers instead of REMs in magnets [66]. This can help reduce the demand for new extraction and processing of REMs in Africa.
- Promoting ecosystem health: protect and promote ecosystem health by reducing pollution and preserving biodiversity. This can help to mitigate the health impacts of REMs on both humans and animals.
- Engaging local communities: Engage local communities and indigenous people in the decision-making processes related to the extraction and processing of REMs to ensure that their voices are heard and their rights are respected.
- Increasing transparency and accountability: Increase transparency in the REM supply chain to ensure that companies operate ethically and in accordance with environmental and social regulations. This should include ensuring that local communities are properly consulted and that their rights are respected.
- Conducting comprehensive environmental assessment: conduct a comprehensive environmental assessment before, during, and after REM mining and processing to identify and mitigate potential health and environmental risk. This should include an assessment of the potential impacts on local ecosystems and the health of nearby communities.
- Developing local capacity: support the development of local capacity for REM extraction and processing to create more jobs and economic opportunities for African communities. This can help to promote local development, regional, and inter-continental partnerships, and increase the value of raw materials produced in Africa.
- Enforcing environmental and social regulations: This ensures that companies operating in Africa are held accountable for their actions and that they operate ethically and in line with international standards.
- Raising awareness: education and promoting a pro-planetary mindset are essential components to curb the negative impact of REM accumulation in the food chain towards food safety practices.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare earth elements in human and animal health: State of art and research priorities. Environ. Res. 2015, 142, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements–Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Zepf, V. Rare Earth Elements: What and where they are. In Rare Earth Elements; Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–39. [Google Scholar] [CrossRef]
- Science History Institute. Science Matters: The Case of Rare Earth Elements. Science History Institute. Online. Available online: https://www.sciencehistory.org/learn/science-matters/case-of-rare-earth-elements-history-future (accessed on 1 July 2022).
- Goodenough, K.M.; Deady, E.A.; Beard, C.D.; Broom-Fendley, S.; Elliott, H.A.; van den Berg, F.; Öztürk, H. Carbonatites and alkaline igneous rocks in post-collisional settings: Storehouses of rare earth elements. J. Earth Sci. 2021, 32, 1332–1358. [Google Scholar] [CrossRef]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Generalic, E. History of Rare Earth Elements. Periodic Table of the Elements. 2019. Available online: https://www.periodni.com/history-of-rare-earth-elements.html (accessed on 1 June 2022).
- Klinger, J.M. A historical geography of rare earth elements: From the discovery to the atomic age. Extr. Ind. Soc. 2015, 2, 572–580. [Google Scholar] [CrossRef]
- American Chemical Society National Historic Chemical Landmarks. Separation of Rare Earth Elements. 1999. Available online: https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/earthelements.html (accessed on 1 July 2022).
- Hollins, O. Lanthanide Resources and Alternatives. A Report for Department of Transport and Department for Business, Innovation and Skills. Oakdene Hollins Research & Consulting. March 2010. Available online: https://www.oadkenehollins.com/reports/2010/5/1/lanthanide-resources-and-alternatives (accessed on 26 July 2022).
- McLemore, V.T. Rare earth elements (REE) deposits in New Mexico: Update. New Mex. Geol. 2015, 37, 59–69. [Google Scholar]
- Bielawski, R. Rare earth elements—A novelty in energy security. J. Ecol. Eng. 2020, 21, 134–149. [Google Scholar] [CrossRef]
- Deng, J. A Lifetime of Rare Earth Love: Notes on the China Academy of Science Academician Xu Guangxian. Science Times, 2009. Available online: https://news.sciencenet.cn/htmlnews/2009/1/215299.html (accessed on 1 August 2022).
- Paulick, H.; Machacek, E. The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives. Resour. Policy 2017, 52, 134–153. [Google Scholar] [CrossRef]
- Campbell, G.A. Rare earth metals: A strategic concern. Miner. Econ. 2014, 27, 21–31. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) inbiology andmedicine. Rend. Lincei Sci. Fis. Nat. 2020, 31, 821–833. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Herrmann, H.; Nolde, J.; Berger, S.; Heise, S. Aquatic ecotoxicity of lanthanum—A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ. Saf. 2016, 124, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Grasso, V.B. Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress. Library of Congress Washington DC Congressional Research Service. Available online: https://apps.dtic.mil/sti/citations/ADA590410 (accessed on 1 August 2022).
- Clearworld. Renewable Energy Requires Rare Earth Minerals; China Holds Most of Them. 31 May 2019. Online. Available online: https://clearworld.us/renewable-energy-requires-rare-earth-minerals-china-holds-most-of-them/ (accessed on 4 July 2022).
- Heier, S. Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Dodd, J. Rethinking the Use of Rare-Earth Elements. WINDPOWER, 30 November 2018. Available online: https://www.windpowermonthly.com/article/1519221/rethinking-use-rare-earth-elements (accessed on 26 October 2022).
- Van Gosen, B.S.; Verplanck, P.L.; Long, K.R.; Gambogi, J.; Seal, R.R., II. The Rare-Earth Elements: Vital to Modern Technologies and Lifestyles; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- Charalampides, G.; Vatali, K.; Karayannis, V.; Baklavaridis, A. Environmental defects and economic impact on global market of rare earth metals. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 161, No 1; p. 012069. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.M.; Bakar, N.K.; Bakar, A.F.; Ashraf, M.A. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review. Environ. Sci. Pollut. Res. 2017, 24, 22764–22789. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, L.; Zhao, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Huang, X.; Zhang, L. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—A critical review. Chem. Eng. J. 2018, 335, 774–800. [Google Scholar] [CrossRef]
- Yin, X.; Martineau, C.; Demers, I.; Basiliko, N.; Fenton, N.J. The potential environmental risks associated with the development of rare earth element production in Canada. Environ. Rev. 2021, 29, 354–377. [Google Scholar] [CrossRef]
- Talens Peiró, L.; Villalba Méndez, G. Material and energy requirement for rare earth production. JOM 2013, 65, 1327–1340. [Google Scholar] [CrossRef] [Green Version]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Ma, L.; Dang, D.H.; Wang, W.; Evans, R.D.; Wang, W.X. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters. Environ. Pollut. 2019, 244, 190–201. [Google Scholar] [CrossRef]
- Macháček, J. Typology of Environmental Impacts of Artisanal and Small-Scale Mining in African Great Lakes Region. Sustainability 2019, 11, 3027. [Google Scholar] [CrossRef] [Green Version]
- Migaszewski, Z.M.; Gałuszka, A.; Dołęgowska, S. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environ. Sci. Pollut. Res. 2016, 23, 24943–24959. [Google Scholar] [CrossRef] [Green Version]
- Macháček, J. Alluvial Artisanal and Small-Scale Mining in A River Stream—Rutsiro Case Study (Rwanda). Forests 2020, 11, 762. [Google Scholar] [CrossRef]
- Lindagato, P.; Li, Y.; Macháček, J.; Yang, G.; Mungwarakarama, I.; Ndahimana, A.; Ntwali, H.P.K. Lithium Metal: The Key to Green Transportation. Appl. Sci. 2023, 13, 405. [Google Scholar] [CrossRef]
- Degtjarenko, P.; Marmor, L.; Randlane, T. Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient. Environ. Sci. Pollut. Res. 2016, 23, 17413–17425. [Google Scholar] [CrossRef]
- Li, X.F.; Chen, Z.B.; Chen, Z.Q. Distribution and fractionation of rare earth elements in soil–water system and human blood and hair from a mining area in southwest Fujian Province, China. Environ. Earth Sci. 2014, 72, 3599–3608. [Google Scholar] [CrossRef]
- Ault, T.; Krahn, S.; Croff, A. Radiological impacts and regulation of rare earth elements in non-nuclear energy production. Energies 2015, 8, 2066–2081. [Google Scholar] [CrossRef] [Green Version]
- Boojar, M.M.A.; Tavakkoli, Z. Antioxidative responses and metal accumulation in invasive plant species growing on mine tailings in Zanjan, Iran. Pedosphere 2011, 21, 802–812. [Google Scholar] [CrossRef]
- Krasavtseva, E.; Maksimova, V.; Makarov, D. Conditions affecting the release of heavy and rare earth metals from the mine tailings Kola Subarctic. Toxics 2021, 9, 163. [Google Scholar] [CrossRef]
- World Health Organization. Environmental and Occupational Health Hazards Associated with Artisanal and Small-Scale Gold Mining; World Health Organization: Geneva, Switzerland, 2016. Available online: https://apps.who.int/iris/handle/10665/247195 (accessed on 4 July 2022).
- Chaulya, S.K.; Prasad, G.M. Slope Failure Mechanism and Monitoring Techniques. In Sensing and Monitoring Technologies for Mines and Hazardous Areas; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–86. [Google Scholar] [CrossRef]
- Stewart, A.G. Mining is bad for health: A voyage of discovery. Environ. Geochem. Health 2020, 42, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Perazella, M.A. Current status of gadolinium toxicity in patients with kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Aracena, J.; Riemersma, R.A.; Gutiérrez-Bedmar, M.; Bode, P.; Kark, J.D.; Garcia-Rodríguez, A.; Gorgojo, L.; van’t Veer, P.; Fernández-Crehuet, J.; Kok, F.J.; et al. Toenail cerium levels and risks of a first acute myocardial infarction: The EURAMIC and heavy metals study. Chemosphere 2006, 64, 112–120. [Google Scholar] [CrossRef]
- Mehta, U.; Dey, S.; Chowdhury, S.; Ghosh, S.; Hart, J.E.; Kurpad, A. The Association between ambient PM2.5 exposure and anemia outcomes among children under five years of age in India. Environ. Epidemiol. 2021, 5, e125. [Google Scholar] [CrossRef]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E. Airborne particulate matter: Human exposure and health effects. J. Occup. Environ. Med. 2018, 60, 392–423. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Noreldin, A.E.; Arif, M.; Chaudhry, M.T.; Losacco, C.; Abdeen, A.; Abdel-Daim, M.M. Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum. Sci. Total Environ. 2019, 672, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Redling, K. Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry. Ph.D. Thesis, LMU, München, Germany, 2006. [Google Scholar] [CrossRef]
- Karakaya, E.; Nuur, C. Social sciences and the mining sector: Some insights into recent research trends. Resour. Policy 2018, 58, 257–267. [Google Scholar] [CrossRef]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- Stegen, K.S. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Kasay, G.M.; Bolarinwa, A.T.; Aromolaran, O.K.; Nzolang, C.; Kivava, A.S. Rare Earth Element Deposits and Their Prospects in the Democratic Republic of Congo. Min. Met. Explor. 2022, 39, 625–642. [Google Scholar] [CrossRef]
- Temga, J.P.; Sababa, E.; Mamdem, L.E.; Bijeck, M.L.N.; Azinwi, P.T.; Tehna, N.; Zame, P.Z.; Onana, V.L.; Nguetnkam, J.P.; Bitom, L.D.; et al. Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Reg. 2021, 25, e00369. [Google Scholar] [CrossRef]
- Compton, J.S.; White, R.A.; Smith, M. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem. Geol. 2003, 201, 239–255. [Google Scholar] [CrossRef]
- Jepson, N. A 21st Century Scramble: South Africa, China and the Rare Earth Metals Industry; Governance of Africa’s Resources Programme; Occasional Paper Number 113; South African Institute of International Affairs: Johannesburg, South Africa, 2012. [Google Scholar]
- Ayedun, H.; Arowolo, T.A.; Gbadebo, A.M.; Idowu, O.A. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria. Environ. Geochem. Health 2016, 39, 649–664. [Google Scholar] [CrossRef]
- Harmer, R.E.; Nex, P.A.M. Rare Earth Deposits of Africa. Epis. J. Int. Geosci. 2016, 39, 381–406. [Google Scholar] [CrossRef] [Green Version]
- Akiwumi, F.A.; D’Angelo, L. The Sierra Leone rare earth minerals landscape: An old or new frontier? Extr. Ind. Soc. 2018, 5, 36–43. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028, Erratum in Lancet 2015, 386, 1944. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C.; Albrecht, G.; Campbell, D.E.; Crane, J.; Cunsolo, A.; Holloway, J.W.; Kozyrskyj, A.L.; Lowry, C.A.; Penders, J.; et al. The Canmore Declaration: Statement of Principles for Planetary Health. Challenges 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Ogunseitan, O.A. Disentangling the Worldwide Web of E-Waste and Climate Change Co-Benefits. Circ. Econ. 2022, 1, 100011. [Google Scholar] [CrossRef]
- Foster, A. The transhuman approach: Technoscience and nature. In Planetary Health: Human Health in an Era of Global Environmental Change; CABI: Wallingford, UK, 2019; Volume 42. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladipo, H.J.; Tajudeen, Y.A.; Taiwo, E.O.; Muili, A.O.; Yusuf, R.O.; Jimoh, S.A.; Oladipo, M.K.; Oladunjoye, I.O.; Egbewande, O.M.; Sodiq, Y.I.; et al. Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa. Challenges 2023, 14, 20. https://doi.org/10.3390/challe14020020
Oladipo HJ, Tajudeen YA, Taiwo EO, Muili AO, Yusuf RO, Jimoh SA, Oladipo MK, Oladunjoye IO, Egbewande OM, Sodiq YI, et al. Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa. Challenges. 2023; 14(2):20. https://doi.org/10.3390/challe14020020
Chicago/Turabian StyleOladipo, Habeebullah Jayeola, Yusuf Amuda Tajudeen, Emmanuel O. Taiwo, Abdulbasit Opeyemi Muili, Rashidat Onyinoyi Yusuf, Sarat Ayomide Jimoh, Muhammad Kamaldeen Oladipo, Iyiola Olatunji Oladunjoye, Oluwaseyi Muyiwa Egbewande, Yusuff Inaolaji Sodiq, and et al. 2023. "Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa" Challenges 14, no. 2: 20. https://doi.org/10.3390/challe14020020