Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence
Abstract
:1. Introduction
2. TRENDS of Arboviruses
2.1. “T: Transmission of Viruses” and Temperature
2.2. “R: Replication of Viruses” and Temperature
2.3. “E: Extrinsic Incubation Period of Viruses” and Temperature
2.4. “N: Nutritional Behavior of Arthropod Vectors” and Temperature
2.5. “D: Distribution of Arthropod Vectors” and Temperature
2.6. “S: Survival of Viruses” and Temperature
3. The Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach to Arboviruses
3.1. Statistical and Mechanistic Approach
3.2. Integrated Surveillance
3.3. Thermal Biology
3.4. Holistic Approach
4. Recommendations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tajudeen, Y.A.; Oladunjoye, I.O.; Mustapha, O.M.; Mustapha, S.T.; Ajide-Bamigboye, N.T. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot. Perspect. 2021, 11, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Ketkar, H.; Herman, D.; Wang, P. Genetic determinants of the re-emergence of arboviral diseases. Viruses 2019, 11, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migné, C.V.; Moutailler, S.; Attoui, H. Strategies for assessing arbovirus genetic variability in vectors and/or mammals. Pathogens 2020, 9, 915. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Tajudeen, Y.A. Anthropocene-An Era with Evil Six Threats Changing the Fate of Biodiversity: Emerging and Re-emerging Aboviruses Calls for Holistic Approach. J. Infect. Dis. Epidemiol. 2021, 7, 212. [Google Scholar]
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019, 22, 1690–1708. [Google Scholar] [CrossRef] [Green Version]
- Buse, C.G.; Gislason, M.; Reynolds, A.; Ziolo, M. Enough Tough Talk! It’s Time for the Tough Action(s) to Promote Local to Global Planetary Health. Int. J. Health Promot. Educ. 2021, 59, 271–275. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladipo, H.J.; Yusuf, R.O.; Oladunjoye, I.O.; Adebayo, A.O.; Ahmed, A.F.; El-Sherbini, M.S. The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers. Challenges 2022, 13, 35. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladipo, H.J.; Oladunjoye, I.O.; Mustapha, M.O.; Mustapha, S.T.; Abdullahi, A.A.; Yusuf, R.O.; Abimbola, S.O.; Adebayo, A.O.; Ikebuaso, J.G.; et al. Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis. Challenges 2022, 13, 50. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladipo, H.J.; Oladunjoye, I.O.; Yusuf, R.O.; Sodiq, H.; Omotosho, A.O.; Adesuyi, D.S.; Yusuff, S.I.; El-Sherbini, M.S. Emerging Arboviruses of Public Health Concern in Africa: Priorities for Future Research and Control Strategies. Challenges 2022, 13, 60. [Google Scholar] [CrossRef]
- Ciota, A.T.; Keyel, A.C. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019, 11, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.L.; Lord, C.C.; Pesko, K.; Tabachnick, W.J. Environmental and biological factors influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus. Am. J. Trop. Med. Hyg. 2009, 81, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, A.M.; Meola, M.A.; Moudy, R.M.; Kramesr, L.D. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 2008, 4, e1000092. [Google Scholar] [CrossRef] [Green Version]
- Samuel, G.H.; Adelman, Z.N.; Myles, K.M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect. Sci. 2016, 16, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Bellone, R.; Failloux, A.-B. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front. Microbiol. 2020, 11, 584846. [Google Scholar] [CrossRef]
- Davis, N.C.; Lloyd, W.; Frobisher, M. Transmission of neurotropic yellow fever virus by stegomyia mosquitoes. J. Exp. Med. 1932, 56, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.M.; Burke, D.S.; Harrison, B.A.; Whitmire, R.E.; Nisalak, A. Effect of temperature on the vector efficiency of aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 1987, 36, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Kinney, R.M.; Huang, C.Y.-H.; Whiteman, M.C.; Bowen, R.A.; Langevin, S.A.; Miller, B.R.; Brault, A.C. Avian virulence and thermostable replication of the North American strain of West Nile virus. J. Gen. Virol. 2006, 87, 3611–3622. [Google Scholar] [CrossRef]
- Pain, R.H. Temperature and macromolecular structure and function. Symp. Soc. Exp. Biol. 1987, 41, 21–33. [Google Scholar]
- Kramer, L.D.; Ciota, A.T. Dissecting vectorial capacity for mosquito-borne viruses. Curr. Opin. Virol. 2015, 15, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, Z.N.; Anderson, M.A.; Wiley, M.R.; Murreddu, M.G.; Samuel, G.H.; Morazzani, E.M.; Myles, K.M. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl. Trop. Dis. 2013, 7, e2239. [Google Scholar] [CrossRef] [Green Version]
- Kramer, L.D.; Hardy, J.L.; Presser, S.B. Effect of temperature of extrinsic incubation on the vector competence of culex tarsalis for western equine encephalomyelitis virus. Am. J. Trop. Med. Hyg. 1983, 32, 1130–1139. [Google Scholar] [CrossRef]
- Richards, S.L.; Mores, C.N.; Lord, C.C.; Tabachnick, W.J. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Zoo Dis. 2007, 7, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Weger-Lucarelli, J.; Auerswald, H.; Vignuzzi, M.; Dussart, P.; Karlsson, E.A. Taking a bite out of nutrition and arbovirus infection. PLoS Negl. Trop. Dis. 2018, 12, e0006247. [Google Scholar] [CrossRef] [Green Version]
- Grimstad, P.R.; Haramis, L.D. Aedes Triseriatus (Diptera: Culicidae) and La Crosse Virus III. Enhanced Oral Transmission by Nutrition-Deprived Mosquitoes. J. Med. Entomol. 1984, 21, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gale, P. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Microb. Risk Anal. 2019, 12, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.; Grossman, M.K.; Waite, J.L.; Dennington, N.L.; Sherrard-Smith, E.; Churcher, T.S.; Thomas, M.B. The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. Nat. Ecol. Evol. 2020, 4, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Liu-Helmersson, J.; Rocklöv, J.; Sewe, M.O.; Brännström, Å. Climate change may enable Aedes aegypti infestation in major European cities by 2100. Environ. Res. 2019, 172, 693–699. [Google Scholar] [CrossRef]
- Wittmann, E.J.; Mellor, P.S.; Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoidessonorensis. Med. Vet. Entomol. 2002, 16, 147–156. [Google Scholar] [CrossRef]
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Balogun, E.O.; Nok, A.J.; Kita, K. Global warming and the possible globalization of vector-borne diseases: A call for increased awareness and action. Trop. Med. Health 2016, 44, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, W.J. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu. Rev. Virol. 2016, 3, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, H.J.; Rabiu, I.; Tajudeen, Y.A. Dengue virus and SARS-CoV-2 Co-infection dynamics: An emerging threat among African countries. Ann. Med. Surg. 2022, 82, 104398. [Google Scholar] [CrossRef]
- Madzokere, E.T.; Hallgren, W.; Sahin, O.; Webster, J.A.; Webb, C.E.; Mackey, B.; Herrero, L.J. Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity, and distributions in Australia. Parasites Vectors 2020, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Papes, M.; Soberon, J. Mechanistic and correlative models of ecological niches. Eur. J. Ecol. 2015, 1, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Tjaden, N.B.; Caminade, C.; Beierkuhnlein, C.; Thomas, S.M. Mosquito-borne diseases: Advances in modelling climate-change impacts. Trends Parasitol. 2018, 34, 227–245. [Google Scholar] [CrossRef]
- Focks, D.A.; Haile, D.G.; Daniels, E.; Mount, G.A. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. J. Med. Entomol. 1993, 30, 1018–1028. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species ranges: The dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Strasburg, J.L.; Kearney, M.; Moritz, C.; Templeton, A.R. Combining phylogeography with distribution modeling: Multiple Pleistocene range expansions in a parthenogenetic gecko from the Australian Arid Zone. PLoS ONE. 2007, 2, e760. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.P. Species distribution models and ecological theory: A critical assessment and some new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Hill, M.P.; Axford, J.K.; Hoffmann, A.A. Predicting the spread of Aedes albopictus in Australia under current and future climates: Multiple approaches and datasets to incorporate potential evolutionary divergence. Austral Ecol. 2014, 39, 469–478. [Google Scholar] [CrossRef]
- Biodiversity Climate Change and Virtual Laboratory (BCCVL). Introduction to Species Distribution Models; 2019. Available online: https://app.bccvl.org.au/training (accessed on 15 June 2016).
- Kearney, M.R.; Wintle, B.A.; Porter, W.P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 2010, 3, 203–213. [Google Scholar] [CrossRef]
- Araujo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2006, 22, 42–47. [Google Scholar] [CrossRef]
- Stark, K.D.C.; Kuribrena, A.M.; Dauphin, G.; Vokaty, S.; Ward, M.P.; Wieland, B.; Lindberg, A. One health surveillance- Morethan a buzz word? Prev. Verterinary Med. 2015, 120, 124–130. [Google Scholar] [CrossRef]
- World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2017, 117, e0005625. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.B.; Kasai, S.; Scott, J.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic. Biochem. Physiol. 2016, 133, 1–12. [Google Scholar] [CrossRef] [PubMed]
- van Wijngaarden, J.; Scholten, G.R.M.; van Wijk, P.S.K. Strategic analysis for health care organizations: The suitability of the SWOT-analysis. Int. J. Health Plan. Manag. 2012, 27, 34–49. [Google Scholar] [CrossRef]
- Amato, L.; Dente, M.; Calistri, P.; Declich, S. Integrated Early Warning Surveillance: Achilles′ Heel of One Health? Microorganisms 2020, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dente, G.M.; Riccardo, F.; Van Bortel, W.; Marrama, L.; Mollet, T.; Derrough, T.; Sudre, B. Enhancing Preparedness for Arbovirus Infections with a One-Health Approach: The Development and Implementation of Multisectoral Risk Assessment Exercises. BioMed Res. Int. 2020, 2020, 4832360. [Google Scholar] [CrossRef] [PubMed]
- Noll, P.; Lilge, L.; Hausmann, R.; Henkel, M. Modeling and exploiting microbial temperature response. Processes 2020, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [Green Version]
- Robert, M.A.; Stewart-Ibarra, A.M.; Estallo, E.L. Climate change and viral emergence: Evidence from Aedes-borne arboviruses. Curr. Opin. Virol. 2020, 40, 41–47. [Google Scholar] [CrossRef]
- Stewart-Ibarra, A.M.; Romero, M.; Hinds, A.Q.; Lowe, R.; Mahon, R.; Van Meerbeeck, C.J.; Rollock, L.; Gittens-St Hilaire, M.; St Ville, S.; Ryan, S.J.; et al. Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 2019, 13, e0007772. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Barraquer, I.; Cordeiro, M.T.; Braga, C.; Souza, W.V.; Marques, E.T.; Cummings, D.A.T. From re-emergence to hyperendemicity: The natural history of the Dengue epidemic in Brazil. PLoS Negl. Trop. Dis. 2011, 5, e935. [Google Scholar] [CrossRef] [Green Version]
- Mordecai, E.A.; Ryan, S.J.; Caldwell, J.M.; Shah, M.M.; LaBeaud, A.D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020, 4, 416–423. [Google Scholar] [CrossRef]
- Oladipo, H.J.; Tajudeen, Y.A.; Oladunjoye, I.O.; Yusuff, S.I.; Yusuf, R.O.; Oluwaseyi, E.M.; AbdulBasit, M.O.; Adebisi, Y.A.; El-Sherbini, M.S. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann. Med. Surg. 2022, 81, 104366. [Google Scholar] [CrossRef]
- Buchwald, A.G.; Hayden, M.H.; Dadzie, S.K.; Paull, S.H.; Carlton, E.J. Aedes-borne disease outbreaks in West Africa: A call for enhanced surveillance. Acta Trop. 2020, 209, 105468. [Google Scholar] [CrossRef] [PubMed]
- Sergon, K.; Onyango, C.; Breiman, R.F.; Ofula, V.; Bedno, S.; Konongoi, L.S.; Burke, H.; Konde, J.; Sang, R.; Dumilla, A.M.; et al. Seroprevalence of Chikungunya Virus (CHIKV) Infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med. Hyg. 2008, 78, 333–337. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO | Chikungunya—Mombasa; WHO: Mombasa, Kenya, 2018; Available online: http://www.who.int/csr/don (accessed on 23 July 2022).
- Tajudeen, Y.A.; Oladunjoye, I.O.; Bajinka, O.; Oladipo, H.J. Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild. Challenges 2022, 13, 41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladipo, H.J.; Tajudeen, Y.A.; Oladunjoye, I.O.; Mustapha, S.T.; Sodiq, Y.I.; Yusuf, R.O.; Egbewande, O.M.; Muili, A.O.; Adigun, T.O.; Taiwo, E.O.; et al. Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence. Challenges 2023, 14, 8. https://doi.org/10.3390/challe14010008
Oladipo HJ, Tajudeen YA, Oladunjoye IO, Mustapha ST, Sodiq YI, Yusuf RO, Egbewande OM, Muili AO, Adigun TO, Taiwo EO, et al. Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence. Challenges. 2023; 14(1):8. https://doi.org/10.3390/challe14010008
Chicago/Turabian StyleOladipo, Habeebullah Jayeola, Yusuf Amuda Tajudeen, Iyiola Olatunji Oladunjoye, Sheriff Taye Mustapha, Yusuff Inaolaji Sodiq, Rashidat Onyinoyi Yusuf, Oluwaseyi Muyiwa Egbewande, Abdulbasit Opeyemi Muili, Taofeekat Oluwatosin Adigun, Emmanuel O. Taiwo, and et al. 2023. "Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence" Challenges 14, no. 1: 8. https://doi.org/10.3390/challe14010008