The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet
Abstract
1. Introduction
2. Lifestyle and Anthropogenic Drivers on Toxoplasma–Microbiome Microecology
3. Biochemical Correlations between Toxoplasmosis and Mental Health
4. Dietary Patterns as a Tool to Mitigate Toxoplasmosis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; Food and Agriculture Organization of the United Nation. Multicriteria-Based Ranking for Risk Management of Food-Borne Parasites: Report of a Joint FAO/WHO Expert Meeting, 3–7 September 2012; FAO: Rome, Italy, 2014. [Google Scholar]
- Centers for Disease Control and Prevention. Preventing Congenital Toxoplasmosis. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4902a5.htm (accessed on 16 August 2022).
- Hussain, M.A.; Stitt, V.; Szabo, E.A.; Nelan, B. Toxoplasma gondii in the Food Supply. Pathogens 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Johnson, P.T. Toxoplasmosis: Recent Advances in Understanding the Link Between Infection and Host Behavior. Annu. Rev. Anim. Biosc. 2021, 9, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Burkinshaw, J.; Kirman, B.H.; Sorsby, A. Toxoplasmosis Is in Relation to Mental Deficiency. Br. Med. J. 1953, 4812, 702–704. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sutterland, A.L.; Fond, G.; Kuin, A.; Koeter, M.W.; Lutter, R.; van Gool, T.; Yolken, R.; Szoke, A.; Leboyer, M.; de Haan, L. Beyond the Association. Toxoplasma gondii in Schizophrenia, Bipolar Disorder, and Addiction: Systematic Review and Meta-Analysis. Acta Psychiatr. Scand. 2015, 132, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, E.; Faizi, F.; Heidarimoghadam, R.; Davoodi, L.; Mohammadi, Y. Association of T. gondii Infection with Suicide: A Systematic Review and Meta-Analysis. BMC Public Health 2020, 20, 766. [Google Scholar] [CrossRef] [PubMed]
- Postolache, T.T.; Wadhawan, A.; Rujescu, D.; Hoisington, A.J.; Dagdag, A.; Baca-Garcia, E.; Lowry, C.A.; Okusaga, O.O.; Brenner, L.A. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 2021, 12, 665682. [Google Scholar] [CrossRef] [PubMed]
- Tedford, E.; McConkey, G. Neurophysiological Changes Induced by Chronic Toxoplasma gondii Infection. Pathogens 2017, 6, 19. [Google Scholar] [CrossRef]
- Madireddy, S.; Chacon, E.D.R.; Mangat, R. Toxoplasmosis; Bookshelf ID: NBK563286; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563286/ (accessed on 15 October 2022). [PubMed]
- Snyder, L.M.; Denkers, E.Y. From initiators to Effectors: Roadmap through the Intestine During Encounter of Toxoplasma gondii with the Mucosal Immune System. Fornt. Cell. Infect. Microbiol. 2021, 11, 614701. [Google Scholar] [CrossRef]
- Tyebji, S.; Seizova, S.; Hannan, A.J.; Tomkin, C.J. Toxoplasmosis: A pathway to neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2019, 96, 72–92. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 15, 32–48. [Google Scholar] [CrossRef]
- Lukic, I.; Getselter, D.; Koren, O.; Elliot, E. Role of Tryptophan in Microbiota-induced Depressive-Like Behavior: Evidence From Tryptophan Depletion Study. Front. Behav. Neurosci. 2019, 4, 123. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, H.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Su, Y. New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals 2022, 12, 1677. [Google Scholar] [CrossRef]
- Sherwin, E.; Dinan, T.G.; Cryan, J.F. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 2018, 1420, 5–25. [Google Scholar] [CrossRef]
- Butler, T.D.; Gibbs, J.E. Circadian Host-Microbiome interactions in Immunity. Front. Immunol. 2020, 14, 1783. [Google Scholar] [CrossRef]
- Asher, G.; Corsi, P.S. Time for food: The interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 26, 84–92. [Google Scholar] [CrossRef]
- Hu, D.; Xie, Z.; Ye, Y.; Bahijri, S.; Chen, M. The beneficial effects of intermittend fasting: And update on mechanism, and the role of circadian rhythm and gut microbiota. Hepatobiliary Surg. Nutr. 2020, 9, 597–602. [Google Scholar] [CrossRef]
- Zeb, F.; Wu, X.; Fatima, S.; Zaman, M.H.; Khan, S.A.; Safdar, M.; Alam, I.; Feng, Q. Time-restricted feeding regulates molecular mechanisms with involvement of circadian rhythm to prevent metabolic diseases. Nutrition 2021, 89, 111244. [Google Scholar] [CrossRef]
- Daher, D.; Shaghlil, A.; Sobh, E.; Hamie, M.; Hassan, M.E.; Moumneh, M.B.; Itani, S.; Hajj, R.E.; Tawk, L.; Sabban, M.E.; et al. Comprehensive Overview of Toxoplasma Gondii Induced and Associated diseases. Pathogens 2021, 20, 1351. [Google Scholar] [CrossRef]
- Graham, H.; White, P.C.L. Social determinants and Lifestyles: Integrating environmental and public health perspectives. Public Health 2016, 141, 270–278. [Google Scholar] [CrossRef]
- Machalaba, C.; Daszak, P.; Karesh, W.B.; Romanelli, C. Anthropogenic Drivers of Emerging infectious Diseases. In Global Sustainable Development Report; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Prescott, S.L.; Logan, A.C.; Katz, D.A. Preventive Medicine for Person, Place, and Planet: Revisiting the Concept of High-Level Wellness in the Planetary Health Paradigm. Int. J. Environ. Res. Public Health 2019, 16, 238. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.S.; Valenzuela, P.L.; Garcia, A.C.; Butragueño, J.; Pavón, D.J.; Bastos, P.C.; Lucia, A. The Exposome and Immune Health in Times of the COVID-19 Pandemic. Nutrients 2021, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Y.; Ramirez, Z.E.; Surana, N.K. A modern world view of host-microbiota-pathogen interactions. J. Immunol. 2022, 207, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Stecher, B.; Hardt, W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 2011, 14, 82–91. [Google Scholar] [CrossRef] [PubMed]
- James, D.G. The Hunterian oration on louis Pasteur’s final judgement. Host reaction, soil or terrain. Trans. Med. Soc. Lond. 1982, 99–100, 131–147. [Google Scholar]
- Cohen, S.B.; Denkers, E.Y. Border maneuvers: Deployment of mucosal immunedefenses against Toxoplasma gondii. Mucosal Immunol. 2014, 7, 744–752. [Google Scholar] [CrossRef]
- Prescott, S.L.; Wegienka, G.; Logan, A.C.; Katz, D.L. Dysbiotic drift and biopsychosocial medicine: How the Microbiome Links Personal, Public and Planetary Health. Biopsychosoc. Med. 2018, 12, 7. [Google Scholar] [CrossRef]
- Greco, C.M.; Sassone-Corsi, P. Personalized Medicine and Circadian Rhythms: Opportunities for Modern Society. J. Exp. Med. 2020, 217, e20200702. [Google Scholar] [CrossRef]
- Akaltun, I.; Kara, S.S.; Kara, T. The relationship between Toxoplasma gondii IgG antibodies and generalized anxiety disorder and obsessive-compulsive disorder in children and adolescents: A new approach. Nord. J. Psychiatry 2018, 72, 57–62. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Gao, K.; Pi, Y.; Mu, C.L.; Farzi, A.; Liu, Z.; Zhu, W.Y. Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: Aromatic amino acids linking the microbiota-brain axis. J. Neurochem. 2019, 149, 641–659. [Google Scholar] [CrossRef]
- Shao, D.Y.; Bai, X.; Tong, M.W.; Zhang, Y.Y.; Liu, X.L.; Zhou, Y.H.; Li, C.; Cai, W.; Gao, X.; Liu, M.; et al. Changes to the gut microbiota in mice induced by infection with Toxoplasma gondii. Acta Trop. 2020, 203, 105301. [Google Scholar] [CrossRef]
- Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012, 4, 1095–1119. [Google Scholar] [CrossRef]
- Daas, M.C.; Roos, N.M. Intermittent fasting conributes to aligned circadian rhythms through interactions with the gut microbiome. Benef. Microbes 2021, 12, 147–161. [Google Scholar] [CrossRef]
- Parkar, S.G.; Kalsbeek, A.; Cheeseman, J.S. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythm and Metabolic Health. Microorganisms 2019, 31, 41. [Google Scholar] [CrossRef]
- Choi, H.; Rao, M.C.; Chang, E.B. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 679–689. [Google Scholar] [CrossRef]
- Patterson, R.E.; Sears, D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef]
- Kaczmarek, J.L.; Thompson, S.V.; Holscher, H.D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 2017, 75, 673–682. [Google Scholar] [CrossRef]
- Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 2018, 67, 1867–1879. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, X.; Zhang, H.; Shi, R.; Hui, Y.; Jin, X.; Zhang, W.; Wang, L.; Wang, Q.; Wang, D.; et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 2020, 11, 855. [Google Scholar] [CrossRef]
- Zhuang, X.; Edgar, R.S.; McKeating, J.A. The role of circadian clock pathways in viral replication. Semin. Immunopathol. 2022, 44, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Korem, T.; Dohnalová, L.; Shapiro, H.; Jaitin, D.A.; David, E.; Winter, D.R.; Gury-BenAri, M.; Tatirovsky, E.; et al. Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell 2016, 167, 1495–1510.e12. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Suez, J.; Elinav, E. The Interplay between the Innate Immune System and the Microbiota. Curr. Opin. Immunol. 2014, 26, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.A.; Rahman, M.A.; Rahman, M.S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, M.J. Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction. Autophagy and immune resonse. Immunol. Lett. 2020, 226, 38–45. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araujo Goes, V.; Tajudeen, Y.A.; El-Sherbini, M.S. The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet. Challenges 2022, 13, 63. https://doi.org/10.3390/challe13020063
de Araujo Goes V, Tajudeen YA, El-Sherbini MS. The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet. Challenges. 2022; 13(2):63. https://doi.org/10.3390/challe13020063
Chicago/Turabian Stylede Araujo Goes, Vanessa, Yusuf Amuda Tajudeen, and Mona Said El-Sherbini. 2022. "The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet" Challenges 13, no. 2: 63. https://doi.org/10.3390/challe13020063
APA Stylede Araujo Goes, V., Tajudeen, Y. A., & El-Sherbini, M. S. (2022). The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet. Challenges, 13(2), 63. https://doi.org/10.3390/challe13020063