Data Science on Industrial Data—Today’s Challenges in Brown Field Applications
Abstract
:1. Introduction
2. Raw Data Collection on the Field
2.1. Open Platform Communication Unified Architecture—OPC UA
2.2. Integration in Field Bus
2.3. Using the Debugging Interface of the PLC
2.4. Third Party Device as Sensor Interface
2.5. Data Collection from Business Intelligence
2.6. Summarizing Data Collection
3. Data Quality
3.1. Lack of Ground Truth to Train Models
3.2. Obtainable Training Data Quality
4. Semantic Description of Available Data
5. It Infrastructure
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Goepp, V.; Siadat, A. Concept and Engineering Development of Cyber Physical Production Systems: A Systematic Literature Review. Int. J. Adv. Manuf. Technol. 2020, 111, 243–261. [Google Scholar] [CrossRef]
- Monostori, L.; Kádár, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.; Ueda, K. Cyber-physical systems in manufacturing. CIRP Ann. 2016, 65, 621–641. [Google Scholar] [CrossRef]
- Menzies, T.; Bird, C.; Zimmermann, T.; Schulte, W.; Kocaganeli, E. The Inductive Software Engineering Manifesto: Principles for Industrial Data Mining. In Proceedings of the International Workshop on Machine Learning Technologies in Software Engineering, Lawrence, KS, USA, 12 November 2011; pp. 19–26. [Google Scholar] [CrossRef]
- Bordeleau, F.È.; Mosconi, E.; Santa-Eulalia, L.A. Business Intelligence in Industry 4.0: State of the Art and Research Opportunities. In Proceedings of the Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 3–6 January 2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, W.; Shi, Y.; Duan, S.; Liu, J. Industrial Big Data Analytics: Challenges, Methodologies, and Applications. arXiv 2018, arXiv:1807.01016. [Google Scholar]
- Gogolev, A.; Braun, R.; Bauer, P. TSN Traffic Shaping for OPC UA Field Devices. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 23–25 July 2019; Volume 1, pp. 951–956. [Google Scholar] [CrossRef]
- Wazny, T. Configuration and Performance Test of TwinCAT 3 OPC-UA Server on Beckhoff IPC; Technical Report; CERN: Geneva, Switzerland, 2015. [Google Scholar]
- Profanter, S.; Tekat, A.; Dorofeev, K.; Rickert, M.; Knoll, A. OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, 13–15 February 2019; pp. 955–962. [Google Scholar] [CrossRef] [Green Version]
- Weyer, S.; Schmitt, M.; Ohmer, M.; Gorecky, D. Towards Industry 4.0—Standardization as the Crucial Challenge for Highly Modular, Multi-Vendor Production Systems. IFAC Pap. Online 2015, 48, 579–584. [Google Scholar] [CrossRef]
- Farnham, B. Automated testing of opc servers. In Proceedings of the 13th International Conference on Accelerator and Large Experimental Physics Control Systems, Grenoble, France, 10–14 November 2011; pp. 985–988. [Google Scholar]
- Kammerer, K.; Hoppenstedt, B.; Pryss, R.; Stökler, S.; Allgaier, J.; Reichert, M. Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights into Two Challenging Real-World Production Settings. Sensors 2019, 19, 5370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalik, N.P.; Yen, M. Extending Fieldbus Standards to Food Processing and Packaging Industry: A Review. Comput. Stand. Interfaces 2009, 31, 586–598. [Google Scholar] [CrossRef]
- Bader, S.R.; Wolff, C.; Vössing, M.; Schmidt, J.P. Towards Enabling Cyber-Physical Systems in Brownfield Environments: Leveraging Environmental Information to Derive Virtual Representations of Unconnected Assets. In Exploring Service Science; Satzger, G., Patrício, L., Zaki, M., Kühl, N., Hottum, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 331, pp. 165–176. [Google Scholar] [CrossRef]
- Khudyakov, P.Y.; Kisel’nikov, A.Y.; Startcev, I.M.; Kovalev, A.A. Version Control System of CAD Documents and PLC Projects. J. Phys. Conf. Ser. 2018, 1015, 042020. [Google Scholar] [CrossRef] [Green Version]
- Lettner, D.; Angerer, F.; Prähofer, H.; Grünbacher, P. A Case Study on Software Ecosystem Characteristics in Industrial Automation Software. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP, Nanjing, China, 26–28 May 2014; ACM: New York, NY, USA, 2014; pp. 40–49. [Google Scholar] [CrossRef]
- Mamo, F.T.; Sikora, A.; Rathfelder, C. Legacy to Industry 4.0: A Profibus Sniffer. J. Phys. Conf. Ser. 2017, 870, 012002. [Google Scholar] [CrossRef] [Green Version]
- Tunkkari, J. Mapping Modbus to OPC Unified Architecture. Master’s Thesis, Aalto University, Espoo, Finnland, 2018. [Google Scholar]
- Zheng, B.; Xu, J.; Li, H.; Xing, J.; Zhao, H.; Liu, G. Development of Remotely Monitoring and Control System for Siemens 840D Sl NC Machine Tool Using Snap 7 Codes. In Proceedings of the 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering, Shanghai, China, 23–23 April 2017; Atlantis Press: Paris, France, 2017. [Google Scholar] [CrossRef] [Green Version]
- Siemens, A.G. Division Digital Factory. In MindSphere with MindConnect Nano and MindConnect IoT2040; Getting Started: Nürnberg, Germany, 2017. [Google Scholar]
- Beckhoff GmbH & Co KG. Fieldbus Networks Workshop—Performance Comparison; Workshop Presentation; Beckhoff GmbH & Co KG: Verl, Germany, 2003. [Google Scholar]
- Strauß, P.; Schmitz, M.; Wöstmann, R.; Deuse, J. Enabling of Predictive Maintenance in the Brownfield through Low-Cost Sensors, an IIoT-Architecture and Machine Learning. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1474–1483. [Google Scholar] [CrossRef]
- Burggräf, P.; Wagner, J.; Koke, B.; Manoharan, K. Sensor Retrofit for a Coffee Machine as Condition Monitoring and Predictive Maintenance Use Case. In Proceedings of the Wirtschaftsinformatik, Siegen, Germany, 23–27 February 2019; pp. 62–66. [Google Scholar]
- Oliveira, M.; Afonso, D. Industry Focused in Data Collection: How Industry 4.0 Is Handled by Big Data. In Proceedings of the 2019 2nd International Conference on Data Science and Information Technology, DSIT 2019, Seoul, Korea, 19–21 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 12–18. [Google Scholar] [CrossRef] [Green Version]
- Obdenbusch, M. Referenzarchitektur für Cloudbasiertes Condition Monitoring am Beispiel von Verpackungsmaschinen. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2018. [Google Scholar]
- Klaeger, T.; Schult, A.; Oehm, L. Using Anomaly Detection to Support Classification of Fast Running Packaging Processes. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN’19), Helsinki-Espoo, Finland, 23–25 July 2019; Volume 1, pp. 343–348. [Google Scholar] [CrossRef] [Green Version]
- Zurita, D.; Carino, J.A.; Picot, A.; Delgado, M.; Ortega, J.A. Diagnosis Method Based on Topology Codification and Neural Network Applied to an Industrial Camshaft. In Proceedings of the 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; pp. 124–130. [Google Scholar] [CrossRef]
- Klaeger, T.; Schult, A.; Majschak, J.P. Lernfähige Bedienerassistenz für Verarbeitungsmaschinen. In Industrie 4.0 Management; GITO mbH Verlag für Industrielle Informationstechnik und Organisation: Berlin, Germany, 2017; Volume 33, pp. 25–28. [Google Scholar]
- Brecher, C.; Obdenbusch, M.; Buchsbaum, M. Optimized State Estimation by Application of Machine Learning. Prod. Eng. 2017, 11, 133–143. [Google Scholar] [CrossRef]
- Smart, E.; Brown, D.; Axel-Berg, L. Comparing One and Two Class Classification Methods for Multiple Fault Detection on an Induction Motor. In Proceedings of the 2013 IEEE Symposium on Industrial Electronics Applications, Taipei, Taiwan, 28–31 May 2013; pp. 132–137. [Google Scholar] [CrossRef]
- Rapur, J.S.; Tiwari, R. Experimental Time-Domain Vibration-Based Fault Diagnosis of Centrifugal Pumps Using Support Vector Machine. ASCE ASME J. Risk Uncertain. Eng. Syst. Part A Mech. Eng. 2017, 3, 044501. [Google Scholar] [CrossRef]
- Mersch, H.; Behnen, D.; Schmitz, D.; Epple, U.; Brecher, C.; Jarke, M. Gemeinsamkeiten Und Unterschiede Der Prozess- Und Fertigungstechnik. In AT Automatisierungstechnik; De Gruyter: Berlin, Germany, 2011; Volume 59. [Google Scholar] [CrossRef]
- Müller, R.; Oehm, L. Process Industries versus Discrete Processing: How System Characteristics Affect Operator Tasks. Cogn. Technol. Work. 2019, 21, 337–356. [Google Scholar] [CrossRef]
- Kohlert, M. Multi-Sensory Data Analysis and On-Line Evaluation for Advanced Process Control and Yield Optimization in Polymer Film Industry. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2015. [Google Scholar]
- L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine Learning with Big Data: Challenges and Approaches. IEEE Access 2017, 5, 7776–7797. [Google Scholar] [CrossRef]
- Matthews, R. Storks Deliver Babies (P = 0.008). Teach. Stat. 2000, 22, 36–38. [Google Scholar] [CrossRef]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [Google Scholar] [CrossRef] [Green Version]
- Webb, G.I.; Lee, L.K.; Petitjean, F.; Goethals, B. Understanding Concept Drift. arXiv 2017, arXiv:1704.00362. [Google Scholar]
- Graube, M.; Pfeffer, J.; Ziegler, J.; Urbas, L. Linked Data as Integrating Technology for Industrial Data. In Proceedings of the 2011 14th International Conference on Network-Based Information Systems, Tirana, Albania, 7–9 September 2011; pp. 162–167. [Google Scholar] [CrossRef]
- Folmer, J.; Kirchen, I.; Trunzer, E.; Vogel-Heuser, B.; Pötter, T.; Graube, M.; Heinze, S.; Urbas, L.; Atzmüller, M.; Arnu, D. Big Und Smart Data. ATP Ed. 2017, 59, 58–69. [Google Scholar] [CrossRef]
- Smart Manufacturing—Reference Architecture Model Industry 4.0 (RAMI4.0). Available online: https://webstore.iec.ch/publication/30082 (accessed on 25 January 2021).
- Gössling, A. Device Information Modeling in Automation—A Computer-Scientific Approach. Ph.D.Thesis, TU Dresden, Dresden, Germany, 2014. [Google Scholar]
- Bunte, A.; Diedrich, A.; Niggemann, O. Integrating Semantics for Diagnosis of Manufacturing Systems. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Nilsson, J.; Sandin, F. Semantic Interoperability in Industry 4.0: Survey of Recent Developments and Outlook. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 127–132. [Google Scholar] [CrossRef]
- Dibowski, H.; Ploennigs, J.; Wollschlaeger, M. Semantic Device and System Modeling for Automation Systems and Sensor Networks. IEEE Trans. Ind. Inform. 2018, 14, 1298–1311. [Google Scholar] [CrossRef]
- Graube, M.; Hensel, S.; Iatrou, C.; Urbas, L. Information Models in OPC UA and Their Advantages and Disadvantages. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Flad, S.; Weißenberger, B.; Chen, X.; Rösch, S.; Voigt, T. Automatische Generierung von Fertigungs—Managementsystemen. In Handbuch Industrie 4.0 Bd.2: Automatisierung; Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M., Eds.; Springer Reference Technik; Springer: Berlin/Heidelberg, Germany, 2017; pp. 349–368. [Google Scholar] [CrossRef]
- Seilonen, I.; Vyatkin, V.; Atmojo, U.D. OPC UA Information Model and a Wrapper for IEC 61499 Runtimes. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN’19), Helsinki-Espoo, Finland, 23–25 July 2019; Volume 1, pp. 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Ringsquandl, M.; Lamparter, S.; Brandt, S.; Hubauer, T.; Lepratti, R. Semantic-Guided Feature Selection for Industrial Automation Systems. In The Semantic Web—ISWC 2015; Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9367, pp. 225–240. [Google Scholar] [CrossRef]
- Diedrich, C.; Hadlich, T.; Thron, M. Semantik durch Merkmale für Industrie 4.0. In Handbuch Industrie 4.0 Bd.2; Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 417–432. [Google Scholar] [CrossRef]
- Formalisierte Prozessbeschreibung—Informationsmodell; VDI/VDE-Richtline VDI/VDE 3682; Verein Deutscher Ingenieure: Düsseldorf, Germany, 2015.
- Fay, A.; Scholz, A.; Hildebrandt, C.; Schröder, T.; Diedrich, C.; Dubovy, M.; Wiegand, R.; Eck, C.; Heidel, R. Semantische Inhalte Für Industrie 4.0. ATP Ed. 2017, 59, 34. [Google Scholar] [CrossRef]
- Arroyo, E.; Schulze, D.; Christiansen, L.; Fay, A.; Thornhill, N.F. Derivation of Diagnostic Models Based on Formalized Process Knowledge. IFAC Proc. Vol. 2014, 47, 3456–3464. [Google Scholar] [CrossRef] [Green Version]
- Colla, M.; Leidi, T.; Semo, M. Design and Implementation of Industrial Automation Control Systems: A Survey. In Proceedings of the 2009 7th IEEE International Conference on Industrial Informatics, Cardiff, UK, 23–26 June 2009; pp. 570–575. [Google Scholar] [CrossRef]
- Holowenko, O. Assistenz der Steuerungsentwicklung Produktionstechnischer Anlagen; InnoTeam-Zeitung; TU Dresden: Dresden, Germany, 2017. [Google Scholar]
- Karnouskos, S. Stuxnet Worm Impact on Industrial Cyber-Physical System Security. In Proceedings of the IECON 2011—37th Annual Conference of IEEE Industrial Electronics, Melbourne, Australia, 7–10 November 2011; pp. 4490–4494. [Google Scholar] [CrossRef]
- Klick, J.; Lau, S.; Marzin, D.; Malchow, J.O.; Roth, V. Internet-Facing PLCs as a Network Backdoor. In Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015; pp. 524–532. [Google Scholar] [CrossRef]
- Colla, M.; Leidi, T.; Semo, M.; Strasser, T. A Survey of Methods and Technologies for Developing Industrial Control Applications. MSAUM J. Rev. Surv. 2009, 1, 259–271. [Google Scholar]
- Diemer, J. Sichere Industrie-4.0-Plattformen auf Basis von Community-Clouds. In Handbuch Industrie 4.0 Bd.1; Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 177–204. [Google Scholar] [CrossRef]
- Fallenbeck, N.; Eckert, C. IT-Sicherheit und Cloud Computing. In Handbuch Industrie 4.0 Bd.4; Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 137–171. [Google Scholar] [CrossRef]
- Pérez, F.; Irisarri, E.; Orive, D.; Marcos, M.; Estevez, E. A CPPS Architecture Approach for Industry 4.0. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaeger, T.; Gottschall, S.; Oehm, L. Data Science on Industrial Data—Today’s Challenges in Brown Field Applications. Challenges 2021, 12, 2. https://doi.org/10.3390/challe12010002
Klaeger T, Gottschall S, Oehm L. Data Science on Industrial Data—Today’s Challenges in Brown Field Applications. Challenges. 2021; 12(1):2. https://doi.org/10.3390/challe12010002
Chicago/Turabian StyleKlaeger, Tilman, Sebastian Gottschall, and Lukas Oehm. 2021. "Data Science on Industrial Data—Today’s Challenges in Brown Field Applications" Challenges 12, no. 1: 2. https://doi.org/10.3390/challe12010002
APA StyleKlaeger, T., Gottschall, S., & Oehm, L. (2021). Data Science on Industrial Data—Today’s Challenges in Brown Field Applications. Challenges, 12(1), 2. https://doi.org/10.3390/challe12010002