Contamination Evaluation of Heavy Metals in a Sediment Core from the Al-Salam Lagoon, Jeddah Coast, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Analysis
3. Results
3.1. Core Lithology and Sediment Texture
3.2. Calcium Carbonate and Organic Matter
3.3. Metals
3.4. Inter-Element Relationship
3.4.1. Matrix Correlation
3.4.2. Contamination Indices
3.4.3. Contaminated Factor (CF)
3.4.4. Geo-Accumulation Index (Igeo)
3.4.5. Pollution Load Index (PLI)
4. Discussion
Contamination Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Hermides, D.; Makri, P.; Kontakiotis, G.; Antonarakou, A. Advances in the Coastal and Submarine Groundwater Processes: Controls and Environmental Impact on the Thriassion Plain and Eleusis Gulf (Attica, Greece). J. Mar. Sci. Eng. 2020, 8, 944. [Google Scholar] [CrossRef]
- Bantan, R.A.; Al-Dubai, T.A.; Al-Zubieri, A.G. Geo-Environmental assessment of heavy metals in the bottom sediments of the Southern Corniche of Jeddah, Saudi Arabia. Mar. Pollut. Bull. 2020, 161, 111721. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Deng, W.; Gao, H.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Shang, Z.; Ren, J.; Tao, L.; Wang, X. Assessment of heavy metals in surface sediments from Gansu section of Yellow River, China. Environ. Monit. Assess. 2015, 187, 79. [Google Scholar] [CrossRef]
- Ghannem, N.; Gargouri, D.; Sarbeji, M.M.; Yaich, C.; Azri, C. Metal contamination of surface sediments of the Sfax–Chebba coastal line, Tunisia. Environ. Earth Sci. 2014, 72, 3419–3427. [Google Scholar] [CrossRef]
- Morrison, R.; Peshut, P.; Lasorsa, B.K. Elemental composition and mineralogical characteristics of coastal marine sediments of Tutuila, American Samoa. Mar. Pollut. Bull. 2010, 60, 925–930. [Google Scholar] [CrossRef]
- Conrad, C.F.; Fugate, D.; Daus, J.; Chisholm-Brause, C.J.; Kuehl, S.A. Assessment of the historical trace metal contamination of sediments in the Elizabeth River, Virginia. Mar. Pollut. Bull. 2007, 54, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Brik, B.; Aydi, A.; Riahi, C.; Sdiri, A.; Regaya, K. Contamination levels and vertical distribution of trace metals with application of geochemical indices in the sediment cores of the Bizerte Lagoon-Ichkeul lake complex in northeastern Tunisia. Arab. J. Geosci. 2018, 11, 23. [Google Scholar] [CrossRef]
- Williams, N.; Block, K.A. Spatial and vertical distribution of metals in sediment cores from Río Espíritu Santo estuary, Puerto Rico, United States. Mar. Pollut. Bull. 2015, 100, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Najjar, T.; Rasheed, M.; Ababneh, Z.; Ababneh, A.; Al-Omarey, H. Heavy metals pollution in sediment cores from the Gulf of Aqaba, Red Sea. Nat. Sci. 2011, 3, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Silva-Filho, E.; Sarkar, S.; Sella, S.; Bhattacharya, A.; Satpathy, K.; Prasad, M.; Chakraborty, S.; Bhattacharya, B. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ. Int. 2007, 33, 346–356. [Google Scholar] [CrossRef]
- Al-Wesabi, E.O.; Zinadah, O.A.A.; Zari, T.A.; Al-Hasawi, Z.M. Histological comparison of some fish tissue as biomarker to evaluate water quality from the Red Sea Coast, Jeddah Governorate. J. Pure Appl. Microbiol. 2015, 9, 1919–1926. [Google Scholar]
- Abu-Zied, R.H.; Basaham, A.S.; El Sayed, M.A. Effect of municipal wastewaters on bottom sediment geochemistry and benthic foraminifera of two Red Sea coastal inlets, Jeddah, Saudi Arabia. Environ. Earth Sci. 2012, 68, 451–469. [Google Scholar] [CrossRef]
- Pan, K.; Lee, O.O.; Qian, P.-Y.; Wang, W.-X. Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Mar. Pollut. Bull. 2011, 62, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Badr, N.B.E.; El-Fiky, A.A.; Mostafa, A.R.; Al-Mur, B.A. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 2008, 155, 509–526. [Google Scholar] [CrossRef]
- Turki, A. Metal Speciation (Cd, Cu, Pb and Zn) in Sediments from Al Shabab Lagoon, Jeddah, Saudi Arabia. J. King Abdulaziz Univ. Sci. 2007, 18, 191–210. [Google Scholar] [CrossRef]
- Basaham, A.; El-Sayed, M. Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments. Estuar. Coast. Shelf Sci. 1998, 46, 185–194. [Google Scholar] [CrossRef]
- Mandura, A. A mangrove stand under sewage pollution stress: Red Sea. Mangroves Salt Marshes 1997, 1, 255–262. [Google Scholar] [CrossRef]
- El Sayed, M.A. Factors Controlling the Distribution and Behaviour of Organic Carbon and Trace Elements in a Heavily Sewage Polluted Coastal Envoironment. Mar. Sci. 2002, 13, 21–46. [Google Scholar] [CrossRef]
- DeVantier, L.; Pilcher, N. The status of coral reefs in Saudi Arabia. In Status of Coral Reefs of the World; Australian Institute of Marine Science: Townsville, Australia, 2000; pp. 1–45. [Google Scholar]
- Risk, M.; Sherwood, O.; Nairn, R.; Gibbons, C. Tracking the Record of Sewage Discharge Off Jeddah, Saudi Arabia, Since 1950, Using Stable Isotope Records from Antipatharians. Mar. Ecol. Prog. Ser. 2009, 397, 219–226. [Google Scholar] [CrossRef] [Green Version]
- El-Rayis, O.A.; Moammar, M.O. Environmental conditions of two Red Sea coastal lagoons in Jeddah: 1. Hydrochemistry. J. King Abdulaziz Univ. Earth Sci. 1998, 9, 31–47. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980; ISBN 0914696149. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Basaham, A.S. Mineralogical and chemical composition of the mud fraction from the surface sediments of Sharm Al-Kharrar, a Red Sea coastal lagoon. Oceanologia 2008, 50, 557–575. [Google Scholar]
- Abu-Zied, R.H.; Bantan, R.A. Palaeoenvironment, palaeoclimate and sea-level changes in the Shuaiba Lagoon during the late Holocene (last 3.6 ka), eastern Red Sea coast, Saudi Arabia. Holocene 2015, 25, 1301–1312. [Google Scholar] [CrossRef]
- Tam, N.; Wong, Y. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut. 2000, 110, 195–205. [Google Scholar] [CrossRef]
- Al-Mur, B.A.; Quicksall, A.N.; Al-Ansari, A.M. Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea, Saudi Arabia. Oceanologia 2017, 59, 262–270. [Google Scholar] [CrossRef]
- Mortuza, M.G.; Al-Misned, F.A. Environmental contamination and assessment of heavy metals in water, sediments and shrimp of Red Sea Coast of Jizan, Saudi Arabia. J. Aquat Pollut. Toxicol. 2017, 1, 5. [Google Scholar]
- Ghandour, I.M.; Basaham, S.; Al-Washmi, A.; Masuda, H. Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia. Environ. Monit. Assess. 2013, 186, 1465–1484. [Google Scholar] [CrossRef]
- Basaham, A.S.; El Sayed, M.A.; Ghandour, I.M.; Masuda, H. Geochemical background for the Saudi Red Sea coastal systems and its implication for future environmental monitoring and assessment. Environ. Earth Sci. 2015, 74, 4561–4570. [Google Scholar] [CrossRef]
- Heba, H.M.A.; AL-Edresi, M.A.M.; AL-Saad, H.T.; Abdelmoneim, M.A. Background levels of heavy metals in dissolved, particulate phases of water and sediment of Al-Hodeidah Red Sea coast of Yemen. Mar. Sci. 2004, 15, 53–71. [Google Scholar] [CrossRef]
- Delshab, H.; Farshchi, P.; Keshavarzi, B. Geochemical distribution, fractionation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian Gulf. Mar. Pollut. Bull. 2017, 115, 401–411. [Google Scholar] [CrossRef]
- Zourarah, B.; Maanan, M.; Carruesco, C.; Aajjane, A.; Mehdi, K.; Freitas, M.C. Fifty-Year sedimentary record of heavy metal pollution in the lagoon of Oualidia (Moroccan Atlantic coast). Estuar. Coast. Shelf Sci. 2007, 72, 359–369. [Google Scholar] [CrossRef]
- Ergül, H.; Topcuoğlu, S.; Ölmez, E.; Kırbaşoğlu, C. Heavy metals in sinking particles and bottom sediments from the eastern Turkish coast of the Black Sea. Estuar. Coast. Shelf Sci. 2008, 78, 396–402. [Google Scholar] [CrossRef]
- Amin, B.; Ismail, A.; Arshad, A.; Yap, C.K.; Kamarudin, M.S. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ. Monit. Assess. 2008, 148, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Seshan, B.R.R.; Natesan, U.; Deepthi, K. Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int. J. Environ. Sci. Technol. 2010, 7, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Campbell, P.G.C.; Tessier, A. Ecotoxicology of metals in the aquatic environment: Geochemical aspects. Ecotoxicol. Hierarchical Treat. 1996, 1, 11–58. [Google Scholar]
- Fytianos, K.; Lourantou, A. Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environ. Int. 2004, 30, 11–17. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Rifaat, A.E.; Al-Washmi, H.A. The relationship between grain size and carbonate minerals in reefal sediment off Feddah City, Red Sea, Saudi Arabia. Bull. Inst. Oceanogr. Fish. 2001, 27, 1–11. [Google Scholar]
- Bellucci, L.G.; Frignani, M.; Paolucci, D.; Ravanelli, M. Distribution of heavy metals in sediments of the Venice Lagoon: The role of the industrial area. Sci. Total Environ. 2002, 295, 35–49. [Google Scholar] [CrossRef]
- Bertolotto, R.M.; Tortarolo, B.; Frignani, M.; Bellucci, L.G.; Albanese, S.; Cuneo, C. Heavy metals in coastal sediments of the Ligurian sea off Vado Ligure. J. Phys. IV 2003, 107, 159–162. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Kandasamy, S. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environ. Earth Sci. 2007, 54, 1333–1346. [Google Scholar] [CrossRef]
- Danielsson, L.-G. Cadmium, cobalt, copper, iron, lead, nickel and zinc in Indian Ocean water. Mar. Chem. 1980, 8, 199–215. [Google Scholar] [CrossRef]
- Kadi, M.W. “Soil Pollution Hazardous to Environment”: A case study on the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah city, Saudi Arabia. J. Hazard. Mater. 2009, 168, 1280–1283. [Google Scholar] [CrossRef]
- Kennish, M.J. Practical Handbook of Estuarine and Marine Pollution; CRC Press: New York, NY, USA, 2017; ISBN 0203742486. [Google Scholar]
- Prego, R.; García, A.; Bernárdez, P. Copper in Galician ria sediments: Natural levels and harbour contamination. Sci. Mar. 2013, 77, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Laxen, D.P.H. The chemistry of metal pollution in water. Pollut. Causes Eff. Control 1983, 44, 104–123. [Google Scholar]
- Abu-Hilal, A.H. Distribution of trace elements in nearshore surface sediments from the Jordan Gulf of Aqaba (Red Sea). Mar. Pollut. Bull. 1987, 18, 190–193. [Google Scholar] [CrossRef]
- Usman, A.R.; Alkredaa, R.S.; Al-Wabel, M. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 2013, 97, 263–270. [Google Scholar] [CrossRef]
- Banat, I.; Hassan, E.; El-Shahawi, M.; Abu-Hilal, A. Post-Gulf-War assessment of nutrients, heavy metal ions, hydrocarbons, and bacterial pollution levels in the United Arab Emirates coastal waters. Environ. Int. 1998, 24, 109–116. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Basaham, A.S. Speciation and mobility of some heavy metals in the coastal sediments of Jeddah, Eastern Red Sea. Arab Gulf J. Sci. Res. 2004, 22, 226–240. [Google Scholar]
- El-Sabrouti, M.A. Geochemistry of recent sediments of lake Burollos. Egypt. Bull. Fac. Sci. Alex. Univ. 1990, 30, 270–294. [Google Scholar]
- Shaw, T.; Gieskes, J.M.; Jahnke, R.A. Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochim. Cosmochim. Acta 1990, 54, 1233–1246. [Google Scholar] [CrossRef]
- Pattan, J. Manganese micronodules: A possible indicator of sedimentary environments. Mar. Geol. 1993, 113, 331–344. [Google Scholar] [CrossRef]
- Janaki-Raman, D.; Jonathan, M.; Srinivasalu, S.; Armstrong-Altrin, J.S.; Mohan, S.; Ram-Mohan, V. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environ. Pollut. 2007, 145, 245–257. [Google Scholar] [CrossRef]
- Elrayis, O.A. Distribution of some heavy metals in sediments, water and different trophic levels from Jeddah coast, REDSEA. JKAU. Mar. Sci. 1989, 3, 33–45. [Google Scholar]
- Pattan, J.; Rao, C.; Higgs, N.; Colley, S.; Parthiban, G. Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean. Chem. Geol. 1995, 121, 201–215. [Google Scholar] [CrossRef]
- Gaillard, J.F.; Pauwels, H.; Michard, G. Chemical diagenesis in coastal marine-sediments. Oceanol. Acta 1989, 12, 175–187. [Google Scholar]
- Li, X.; Shen, Z.; Wai, O.W.; Li, Y.-S. Chemical Forms of Pb, Zn and Cu in the Sediment Profiles of the Pearl River Estuary. Mar. Pollut. Bull. 2001, 42, 215–223. [Google Scholar] [CrossRef]
- Fan, W.; Wang, W.-X.; Chen, J.; Li, X.; Yen, Y.-F. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Mar. Pollut. Bull. 2002, 44, 820–826. [Google Scholar] [CrossRef]
- Korfali, S.I.; Davies, B.E. Speciation of metals in sediment and water in a river underlain by limestone: Role of carbonate species for purification capacity of rivers. Adv. Environ. Res. 2004, 8, 599–612. [Google Scholar] [CrossRef]
- Peng, S.-H.; Wang, W.-X.; Li, X.; Yen, Y.-F. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere 2004, 57, 839–851. [Google Scholar] [CrossRef]
- Rubio, B.; Nombela, M.A.; Vilas, F. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Mar. Pollut. Bull. 2000, 40, 968–980. [Google Scholar] [CrossRef]
- Fernandes, H.M. Heavy metal distribution in sediments and ecological risk assessment: The role of diagenetic processes in reducing metal toxicity in bottom sediments. Environ. Pollut. 1997, 97, 317–325. [Google Scholar] [CrossRef]
- Ramirez, M.; Massolo, S.; Frache, R.; Correa, J.A. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar. Pollut. Bull. 2005, 50, 62–72. [Google Scholar] [CrossRef]
- Arias, R.; Barona, A.; Ibarra-Berastegi, G.; Aranguiz, I.; Elias, A. Assessment of metal contamination in dregded sediments using fractionation and Self-Organizing Maps. J. Hazard. Mater. 2008, 151, 78–85. [Google Scholar] [CrossRef]
- Wong, C.S.; Wu, S.; Duzgoren-Aydin, N.S.; Aydin, A.; Wong, M.H. Trace metal contamination of sediments in an e-waste processing village in China. Environ. Pollut. 2007, 145, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Prego, R.; Belzunce Segarra, M.J.; Helios-Rybicka, E.; Barciela, M. Cadmium, manganese, nickel and lead contents in surface sediments of the lower Ulla River and its estuary (northwest Spain). Inst. Esp. De Oceanogr. 1999, 15, 495–500. [Google Scholar]
- Hosono, T.; Su, C.-C.; Siringan, F.; Amano, A.; Onodera, S.-I. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar. Pollut. Bull. 2010, 60, 780–785. [Google Scholar] [CrossRef] [PubMed]
Location on the Red Sea | Cr | Cu | Fe | Mn | Ni | Zn | Pb | References |
---|---|---|---|---|---|---|---|---|
µg g−1 | ||||||||
Al-Salam Lagoon Core Jeddah Total Average (0–220 cm) | 60 | 92 | 208 | 188 | 51 | 227 | 64 | Present Study |
Average of Top section (0–110 cm) | 61 | 141 | 276 | 242 | 60 | 281 | 81 | |
Average of Bottom section(110–220 cm) | 59 | 12 | 97 | 99 | 37 | 140 | 35 | |
Downtown Core Jeddah (0–50 cm) | 265 | 352 | 678 | - | 747 | 382 | [29] | |
Jizan | 5.64 | 16.39 | - | 9.58 | 14.32 | 24.74 | 3.86 | [30] |
Sharm Obhur, Jeddah. | 144 | 47 | - | 674 | 57 | 82 | 5 | [31] |
Al-Arbaeen Lagoon Jeddah | 60 | 58 | - | 139 | 48 | 118 | - | [14] |
Al-Shabab Lagoon Jeddah | 89 | 72 | - | 247 | 85 | 234 | - | |
Jeddah Coast | - | 82 | - | - | - | 179 | 69 | [15] |
Jeddah Coast | 12–23 | 17–24 | 2032–2671 | 34–205 | 67–85 | 52–76 | 80–99 | [16] |
Al-Shuaiba Lagoon | 39 | 31 | 1600 | 170 | 13 | 29 | - | [32] |
Al-Mejarma Lagoon | 58 | 33.0 | 1700 | 303 | 11 | 35 | - | |
Al-Kharar Lagoon | 69 | 44 | 3180 | 711 | 39 | 55 | - | |
Al-Kumrah, Jeddah | - | 14 | 19.21 | 23.87 | - | 1.01 | 39.32 | [13] |
Al-Shoaibah, Jeddah | - | 0.5 | 6.70 | 3.30 | - | 0.257 | 3.06 | |
Al-Shabab Lagoon Jeddah. | - | 163 | - | - | - | 179 | 116 | [17] |
Al-Hoedidah coast Yemen | 6–38–38.46 | 36.70–79.90 | 7.10–116.4 | 9.17–24.21 | 99.67–199.76 | 4.02–18.25 | 4.99–6.26 | [33] |
Gulf of Aqaba | ||||||||
Jordan | 1.12 | 0.03 | - | - | 0.43 | 0.42 | 4.07 | [11] |
Persian Gulf Iran | 5.7–52.4 | 1.9–304 | - | 50–466 | - | 5–123 | 1–14 | [34] |
Mediterranean Sea | ||||||||
Bizerte lagoon, Tunisia | - | 2.81 | 513.58 | 71.31 | - | 33.54 | 31.61 | [9] |
Atlantic Coast | ||||||||
Oualidia Lagoon Morocco | 52.48 | 36.46 | 6.91 | - | - | 227.86 | 54.59 | [35] |
Black Sea | 70–74 | 52–55 | - | 650–672 | 23–26 | 169–182 | <0.1 | [36] |
Malaca Strait | ||||||||
Dumai coast Indonesia | - | 6.08 | - | - | - | 53.89 | 32.34 | [37] |
Bay of Bangal | ||||||||
Pulicat lagoon S.E coast India | 37 | 108 | - | - | - | 141 | 5 | [38] |
UCC | 35 | 25 | 610 | 20 | 71 | 20 | [39] | |
Average shale | 90 | 45 | 850 | 50 | 95 | 20 | [40] |
Mud | Sand | Gravel | LOI | CaCO3 | Fe | Mn | Cr | Zn | Cu | Ni | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | µg g−1 | |||||||||||
Mud | 1 | |||||||||||
Sand | −0.983 ** | 1 | ||||||||||
Gravel | −0.792 ** | 0.665** | 1 | |||||||||
Loi | 0.314 * | −0.237 | −0.487 ** | |||||||||
CaCO3 | −0.366 ** | 0.298* | 0.494 ** | −0.610 ** | 1 | |||||||
Fe | 0.417 ** | −0.335* | −0.579 ** | 0.557 ** | −0.850 ** | 1 | ||||||
Mn | 0.488 ** | −0.414** | −0.604 ** | 0.582 ** | −0.857 ** | 0.946 ** | 1 | |||||
Cr | 0.177 | −0.191 | −0.085 | 0.422 ** | 0.05 | 0.126 | 0.197 | 1 | ||||
Zn | 0.270 * | −0.218 | −0.367 ** | 0.497 ** | −0.557 ** | 0.707 ** | 0.673 ** | 0.320 * | 1 | |||
Cu | 0.349 ** | −0.274 * | −0.505 ** | 0.659 ** | −0.732 ** | 0.810 ** | 0.0772 ** | 0.242 | 0.805 ** | 1 | ||
Ni | 0.119 | −0.055 | −0.298 * | 0.249 | −0.355 ** | 0.452 ** | 0.475 ** | 0.146 | 0.404 ** | 0.604 ** | 1 | |
Pb | 0.225 | −0.173 | −0.337 ** | 0.630 ** | −0.417 ** | 0.480 ** | 0.410 ** | 0.390 ** | 0.0753 ** | 0.805 ** | 0.238 | 1 |
Sediment Section | Fe | Mn | Cr | Zn | Cu | NI | Pb | PLI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | |||
Whole core (0–220 cm) | Minimum | 0.4 | −2.1 | 0.5 | −1.7 | 0.6 | −1.4 | 0.2 | −3.3 | 0.3 | −2.6 | 0.5 | −1.6 | 0.5 | −1.7 | 0.5 |
Maximum | 6.6 | 2.1 | 4.5 | 1.6 | 1.9 | 0.3 | 5.9 | 2 | 36.3 | 4.6 | 7.2 | 2.3 | 9.5 | 2.7 | 6.7 | |
Average | 2.1 | 0.2 | 1.9 | 0.1 | 1 | −0.6 | 1.6 | −0.3 | 7.6 | 1.1 | 1.4 | −0.2 | 1.8 | −0.1 | 2.4 | |
Polluted sediments (0–110 cm) | Minimum | 0.4 | −2.1 | 0.5 | −1.7 | 0.6 | −1.4 | 0.2 | −3.3 | 0.3 | −2.6 | 0.5 | −1.6 | 0.5 | −1.7 | 0.5 |
Maximum | 6.6 | 2.1 | 4.5 | 1.6 | 1.9 | 0.3 | 5.9 | 2 | 36.3 | 4.6 | 7.2 | 2.3 | 9.5 | 2.7 | 6.7 | |
Average | 2.9 | 0.7 | 2.5 | 0.5 | 1.1 | −0.6 | 2.1 | 0 | 12.1 | 2 | 1.8 | 0 | 2.5 | 0.2 | 3.1 | |
Unpolluted sediments (110–220 cm) | Minimum | 0.4 | −1.9 | 0.5 | −1.6 | 0.7 | −1.1 | 0.3 | −2.4 | 0.6 | −1.4 | 0.6 | −1.4 | 0.6 | −1.4 | 0.7 |
Maximum | 1.4 | −0.1 | 1.9 | 0.3 | 1.1 | −0.4 | 2.1 | 0.5 | 1.4 | −0.1 | 1.2 | −0.3 | 1.2 | −0.3 | 1.8 | |
Average | 1 | −0.7 | 1 | −0.6 | 1 | −0.6 | 1 | −0.8 | 1.1 | −0.6 | 1 | −0.6 | 1 | −0.6 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannaa, A.A.; Khan, A.A.; Haredy, R.; Al-Zubieri, A.G. Contamination Evaluation of Heavy Metals in a Sediment Core from the Al-Salam Lagoon, Jeddah Coast, Saudi Arabia. J. Mar. Sci. Eng. 2021, 9, 899. https://doi.org/10.3390/jmse9080899
Mannaa AA, Khan AA, Haredy R, Al-Zubieri AG. Contamination Evaluation of Heavy Metals in a Sediment Core from the Al-Salam Lagoon, Jeddah Coast, Saudi Arabia. Journal of Marine Science and Engineering. 2021; 9(8):899. https://doi.org/10.3390/jmse9080899
Chicago/Turabian StyleMannaa, Ammar A., Athar Ali Khan, Rabea Haredy, and Aaid G. Al-Zubieri. 2021. "Contamination Evaluation of Heavy Metals in a Sediment Core from the Al-Salam Lagoon, Jeddah Coast, Saudi Arabia" Journal of Marine Science and Engineering 9, no. 8: 899. https://doi.org/10.3390/jmse9080899
APA StyleMannaa, A. A., Khan, A. A., Haredy, R., & Al-Zubieri, A. G. (2021). Contamination Evaluation of Heavy Metals in a Sediment Core from the Al-Salam Lagoon, Jeddah Coast, Saudi Arabia. Journal of Marine Science and Engineering, 9(8), 899. https://doi.org/10.3390/jmse9080899