Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical and Numerical Model
2.2. Numerical Simulations
3. Results
3.1. Verification
3.1.1. Wave Generation and Numerical Beach
3.1.2. Mesh Study
3.1.3. Time Step Analysis
3.2. Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Water Assessment Programme. The United Nations World Water Development Report 3: Water in a Changing World; Technical Report; UNESCO: Paris, France, 2009. [Google Scholar] [CrossRef]
- Hil Baky, M.A.; Rahman, M.M.; Islam, A.K. Development of renewable energy sector in Bangladesh: Current status and future potentials. Renew. Sustain. Energy Rev. 2017, 73, 1184–1197. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Balances 2017; Technical Report; International Energy Agency: Paris, France, 2017. [Google Scholar]
- Empresa de Pesquisa Energética. Balanço Energético Nacional 2018: Ano Base 2017; Technical Report; Ministério de Minas e Energia: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- Ressurreição, A.; Gibbons, J.; Dentinho, T.P.; Kaiser, M.; Santos, R.S.; Edwards-Jones, G. Economic valuation of species loss in the open sea. Ecol. Econ. 2011, 70, 729–739. [Google Scholar] [CrossRef]
- Melikoglu, M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018, 148, 563–573. [Google Scholar] [CrossRef]
- Espindola, R.L.; Araújo, A.M. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data. PLoS ONE 2017, 12, e0183501. [Google Scholar] [CrossRef] [PubMed]
- Falcão, A.F.O.; Henriques, J.C.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Machado, B.N.; Kisner, E.V.; Paiva, M.D.S.; Gomes, M.D.N.; Rocha, L.A.O.; Marques, W.C.; dos Santos, E.D.; Isoldi, L.A. Numerical Generation of Regular Waves Using Discrete Analytical Data As Boundary Condition of Prescribed Velocity. In Proceedings of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, Florianopolis, Brazil, 5–8 November 2017. [Google Scholar] [CrossRef]
- Hudspeth, R.T.; Guenther, R.B. Wavemaker Theories. In Handbook of Coastal and Ocean Engineering; Kim, Y.C., Ed.; World Scientific: Singapore, 2009; pp. 25–56. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991; Volume 2, p. 368. [Google Scholar]
- Liu, Z.; Hyun, B.S.; Jin, J. Numerical Prediction for Overtopping Performance of OWEC. In Proceedings of the Oceans 2008–MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008; p. 6. [Google Scholar] [CrossRef]
- Gomes, M.N.; Isoldi, L.A.; Olinto, C.R.; Rocha, L.A.; Souza, J.A. Computational modeling of a regular wave tank. Therm. Eng. 2009, 8, 44–50. [Google Scholar] [CrossRef]
- Liu, Z.; Hyun, B.S.; Hong, K. Numerical study of air chamber for oscillating water column wave energy convertor. China Ocean Eng. 2011, 25, 169–178. [Google Scholar] [CrossRef]
- Du, Q.; Leung, D.Y. 2D Numerical Simulation of Ocean Waves. In Proceedings of the World Renewable Energy Congress 2011, Linkoping, Sweden, 8–13 May 2011; Volume 57, pp. 2183–2189. [Google Scholar] [CrossRef] [Green Version]
- Kusumawinahyu, W.M.; Karjanto, N.; Klopman, G. Linear theory for single and double flap wavemakers. J. Indones. Math. Soc. 2006, 12, 41–57. [Google Scholar]
- Lal, A.; Elangovan, M. CFD Simulation and Validation of Flap Type Wave-Maker. World Acad. Sci. Eng. Technol. 2008, 48, 76–82. [Google Scholar]
- Elangovan, M. Simulation of irregular waves by CFD. Int. J. Mech. Mechatron. Eng. 2011, 5, 1379–1383. [Google Scholar] [CrossRef]
- Krvavica, N.; Ružić, I.; Ožanić, N. New approach to flap-type wavemaker equation with wave breaking limit. Coast. Eng. J. 2018, 60, 10. [Google Scholar] [CrossRef]
- Wu, Y.C. Plunger-type wavemaker theory. J. Hydraul. Res. 1988, 26, 483–491. [Google Scholar] [CrossRef]
- Wu, Y.C. Waves generated by a plunger-type wavemaker. J. Hydraul. Res. 1991, 29, 851–860. [Google Scholar] [CrossRef]
- Lowell, S.; Irani, R.A. Sensitivity analysis of plunger-type wavemakers with water current. In Proceedings of the IEEE Global OCEANS 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; p. 9. [Google Scholar] [CrossRef]
- He, M.; Khayyer, A.; Gao, X.; Xu, W.; Liu, B. Theoretical method for generating solitary waves using plunger-type wavemakers and its Smoothed Particle Hydrodynamics validation. Appl. Ocean. Res. 2021, 106, 30. [Google Scholar] [CrossRef]
- Doustdar, M.M.; Kazemi, H. Effects of fixed and dynamic mesh methods on simulation of stepped planing craft. J. Ocean. Eng. Sci. 2019, 4, 33–48. [Google Scholar] [CrossRef]
- Oliveira, L.O.D.; Teixeira, P.R.; Dos Santos, E.D.; Isoldi, L.A. Constructal design applied to the geometric optimization of the hydropneumatic chamber dimensions of an Oscillating Water Column wave energy device. In Proceedings of the 11th Youth Symposium on Experimental Solid Mechanics, Brasov, Romania, 30 May–2 June 2012; pp. 173–178. [Google Scholar]
- Gomes, M.N.; Nascimento, C.D.; Bonafini, B.L.; Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Two-Dimensional Geometric Optimization of an Oscillating Water Column Converter in Laboratory Scale. Therm. Eng. 2012, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.d.N.; Seibt, F.M.; Rocha, L.A.O.; dos Santos, E.D.; Isoldi, L.A. Numerical analysis of an oscillating water column converter considering a physical constraint in the chimney outlet. Mar. Syst. Ocean Technol. 2014, 9, 85–93. [Google Scholar] [CrossRef]
- Lorenzini, G.; Lara, M.F.E.; Rocha, L.A.O.; Gomes, M.D.N.; Dos Santos, E.D.; Isoldi, L.A. Constructal design applied to the study of the geometry and submergence of an Oscillating Water Column. Int. J. Heat Technol. 2015, 33, 31–38. [Google Scholar] [CrossRef]
- Lima, Y.T.B.; Rocha, L.A.O.; Gomes, M.d.N.; Isoldi, L.A.; dos Santos, E.D. Numerical Evaluation of Hydropneumatic Power for Two Oscillating Water Column (OWC) Devices Coupled Using Constructal Design. In Proceedings of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, Florianopolis, Brazil, 5–8 November 2017. [Google Scholar] [CrossRef]
- Lisboa, R.C.; Teixeira, P.R.; Torres, F.R.; Didier, E. Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast. Energy 2018, 162, 1115–1124. [Google Scholar] [CrossRef]
- Gomes, M.N.; Lorenzini, G.; Rocha, L.A.; dos Santos, E.D.; Isoldi, L.A. Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. J. Eng. Thermophys. 2018, 27, 173–190. [Google Scholar] [CrossRef]
- Hübner, R.G.; Oleinik, P.H.; Marques, W.C.; Gomes, M.N.; dos Santos, E.D.; Machado, B.N.; Isoldi, L.A. Numerical Study Comparing the Incidence Influence Between Realistic Wave and Regular Wave Over an Overtopping Device. Therm. Eng. 2019, 18, 46. [Google Scholar] [CrossRef]
- Hardy, P.; Cazzolato, B.S.; Ding, B.; Prime, Z. A maximum capture width tracking controller for ocean wave energy converters in irregular waves. Ocean Eng. 2016, 121, 516–529. [Google Scholar] [CrossRef]
- Lisboa, R.C.; Teixeira, P.R.F.; Didier, E. Regular and Irregular Wave Propagation Analysis in a Flume with Numerical Beach Using a Navier-Stokes Based Model. Defect Diffus. Forum 2017, 372, 81–90. [Google Scholar] [CrossRef]
- Têtu, A. Power Take-Off Systems for WECs. In Handbook of Ocean Wave Energy; Pecher, A., Kofoed, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 8; pp. 203–220. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Yu, Y. The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves. Energy 2018, 143, 833–845. [Google Scholar] [CrossRef]
- Gomes, M.d.N.; De Deus, M.J.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Analysis of the geometric constraints employed in constructal design for oscillating water column devices submitted to the wave spectrum through a numerical approach. Defect Diffus. Forum 2019, 390, 193–210. [Google Scholar] [CrossRef]
- Tay, Z.Y. Energy extraction from an articulated plate anti-motion device of a very large floating structure under irregular waves. Renew. Energy 2019, 130, 206–222. [Google Scholar] [CrossRef]
- Tavares, G.P.; Maciel, R.P.; dos Santos, E.D.; Gomes, M.d.N.; Rocha, L.A.O.; Machado, B.N.; Oleinik, P.H.; Isoldi, L.A. A Comparative Numerical Analysis of the Available Power Between Regular and Irregular Waves: Case Study of an Oscillating Water Column Converter in Rio Grande Coast, Brazil. Procceedings of the 18th Brazilian Congress of Thermal Sciences and Engineering, online, 16–20 November 2020; p. 11. [Google Scholar] [CrossRef]
- Zabihi, M.; Mazaheri, S.; Namin, M.M. Numerical Validation of Experimental Tests Conducted on a Fixed Offshore Oscillating Water Column. Int. J. Coast. Offshore Eng. 2019, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- ANSYS Inc. Ansys Fluent Theory Guide; ANSYS, Inc.: Cannonsburg, PA, USA, 2013. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 8th ed.; Springer: Berlin, Germany, 2000; p. 802. [Google Scholar] [CrossRef]
- Meier, G.E.A.; Sreenivasan, K.R. (Eds.) IUTAM Symposium on One Hundred Years of Boundary Layer Research. In Proceedings of the International Union of Theoretical and Applied Mechanics Symposium; Springer: Göttingen, Germany, 2004; p. 507. [Google Scholar]
- Gonçalves, R.A.A.C.; Teixeira, P.R.F.; Didier, E.; Torres, F.R. Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber. Renew. Energy 2020, 153, 1183–1193. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Gopala, V.R.; van Wachem, B.G. Volume of fluid methods for immiscible-fluid and free-surface flows. Chem. Eng. J. 2008, 141, 204–221. [Google Scholar] [CrossRef]
- Srinivasan, V.; Salazar, A.J.; Saito, K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology. Appl. Math. Model. 2011, 35, 3710–3730. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Chapter 8—Ocean Modelling for Resource Characterization. In Fundamentals of Ocean Renewable Energy; Neill, S.P., Hashemi, M.R., Eds.; E-Business Solutions; Academic Press: Cambridge, MA, USA, 2018; pp. 193–235. [Google Scholar] [CrossRef]
- Misra, S.; He, J. Chapter 3—Shallow neural networks and classification methods for approximating the subsurface in situ fluid-filled pore size distribution. In Machine Learning for Subsurface Characterization; Misra, S., Li, H., He, J., Eds.; Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 65–101. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Perić, R.; Abdel-Maksoud, M. Reliable damping of free-surface waves in numerical simulations. Ship Technol. Res. 2016, 63, 1–13. [Google Scholar] [CrossRef] [Green Version]
Length and Height of Mesh Elements throughout the Channel | Height of Mesh Elements Inside Free Surface Refinement Zone | |
---|---|---|
Mesh 1 | L/10 | H/10 |
Mesh 2 | L/20 | H/15 |
Mesh 3 | L/30 | H/20 |
Mesh 4 | L/40 | H/25 |
Discretization | NRMSE (%) |
---|---|
5 line segments | 3.99 |
8 line segments | 2.79 |
10 line segments | 6.20 |
16 line segments | 4.21 |
Values of | Wave Height Ratio (%) |
---|---|
5 | 2.15 |
15 | 0.13 |
25 | 0.07 |
50 | 0.06 |
100 | 0.06 |
Mesh Number | NRMSE (%) |
---|---|
1 | 7.95 |
2 | 4.27 |
3 | 5.04 |
4 | 1.15 |
Time Step | NRMSE (%) |
---|---|
T/50 | 3.45 |
T/100 | 2.15 |
T/200 | 1.46 |
T/400 | 1.15 |
T/800 | 1.16 |
Flow Regime | NRMSE (%) | ||||
---|---|---|---|---|---|
WG1 | WG2 | WG3 | WG4 | PS | |
Laminar flow | 3.37 | 5.07 | 9.35 | 5.27 | 4.22 |
Turbulent – k- | 3.27 | 5.03 | 8.23 | 4.93 | 4.40 |
Turbulent – k- SST | 3.32 | 5.16 | 9.03 | 5.11 | 4.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, R.P.; Fragassa, C.; Machado, B.N.; Rocha, L.A.O.; dos Santos, E.D.; Gomes, M.N.; Isoldi, L.A. Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition. J. Mar. Sci. Eng. 2021, 9, 896. https://doi.org/10.3390/jmse9080896
Maciel RP, Fragassa C, Machado BN, Rocha LAO, dos Santos ED, Gomes MN, Isoldi LA. Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition. Journal of Marine Science and Engineering. 2021; 9(8):896. https://doi.org/10.3390/jmse9080896
Chicago/Turabian StyleMaciel, Rafael P., Cristiano Fragassa, Bianca N. Machado, Luiz A. O. Rocha, Elizaldo D. dos Santos, Mateus N. Gomes, and Liércio A. Isoldi. 2021. "Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition" Journal of Marine Science and Engineering 9, no. 8: 896. https://doi.org/10.3390/jmse9080896
APA StyleMaciel, R. P., Fragassa, C., Machado, B. N., Rocha, L. A. O., dos Santos, E. D., Gomes, M. N., & Isoldi, L. A. (2021). Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition. Journal of Marine Science and Engineering, 9(8), 896. https://doi.org/10.3390/jmse9080896