# Nonlinear Wave Evolution in Interaction with Currents and Viscoleastic Muds

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Model

#### 2.1. Nonlinear Wave–Current Interaction Model

#### 2.2. Model for Surface Wave Evolution over Viscoelastic Mud

#### 2.2.1. Macpherson Model

#### 2.2.2. Liu and Chan Model

#### 2.2.3. Comparison between Viscoelastic Mud Models

## 3. Model Results

#### 3.1. Model Validation

#### 3.2. Effect of Currents on Propagation of Monochromatic Waves over Mud

#### 3.3. Effects of Currents on Propagation of Random Wave Spectra over Mud

#### 3.4. Propagation of Cnoidal and Random Wave Spectra over Mud of Arbitrary Depth

## 4. Discussion

## 5. Summary and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Sheremet, A.; Stone, G.W. Observations of nearshore wave dissipation over muddy seabeds. J. Geophys. Res.
**2003**, 108, 3357–3368. [Google Scholar] [CrossRef] - Kaihatu, J.; Sheremet, A.; Holland, K. A model for the propagation of nonlinear surface waves over viscous muds. J. Coast. Eng.
**2007**, 54, 752–764. [Google Scholar] [CrossRef] - Tahvildari, N.; Kaihatu, J.M. Optimized determination of viscous mud properties using a nonlinear wave–mud interaction model. J. Atmos. Ocean. Technol.
**2011**, 28, 1486–1503. [Google Scholar] [CrossRef] - Liao, Y.P.; Safak, I.; Kaihatu, J.; Sheremet, A. Nonlinear and directional effects on wave predictions over muddy bottoms: Central chenier plain coast, western louisiana shelf, usa. Ocean Dyn.
**2015**, 65, 1567–1581. [Google Scholar] [CrossRef] - Safak, I.; Sheremet, A.; Davis, J.; Kaihatu, J.M. Nonlinear wave dynamics in the presence of mud-induced dissipation on atchafalaya shelf, Louisiana, USA. Coast. Eng.
**2017**, 130, 52–64. [Google Scholar] [CrossRef] - Tahvildari, N.; Sharifineyestani, E. A numerical study on nonlinear surface wave evolution over viscoelastic mud. Coast. Eng.
**2019**, 154, 103557. [Google Scholar] [CrossRef] - Smith, R. Giant waves. J. Fluid. Mech.
**1975**, 77, 417–431. [Google Scholar] [CrossRef] - Crapper, G. Nonlinear gravity waves on steady non-uniform currents. J. Fluid. Mech.
**1972**, 52, 713–724. [Google Scholar] [CrossRef] - Chawla, A.; Kirby, J. Monochromatic and random wave breaking at blocking points. J. Geophys. Res.
**2002**, 107. [Google Scholar] [CrossRef] [Green Version] - Turpin, F.M.; Benmoussa, C.; Mei, C. Effects of slowly varying depth and current on the evolution of a stokes wavepacket. J. Fluid. Mech.
**1983**, 132, 1–23. [Google Scholar] [CrossRef] - Kirby, J. Higher-order approximations in the parabolic equation method for water waves. J. Geophys. Res.
**1986**, 91, 933–952. [Google Scholar] [CrossRef] - Kaihatu, J. Application of a nonlinear frequency domain wave current interaction model to shallow water recurrence in random waves. J. Ocean Model.
**2009**, 26, 190–250. [Google Scholar] [CrossRef] - Bretherton, F.; Garrett, C. Wavetrains in inhomogeneous moving media. Proc. R. Soc. Ser. A
**1968**, 302, 529–554. [Google Scholar] - Chen, Q.; Madsen, P.; Basco, D. Current effects on nonlinear interactions of shallow-water waves. J. Waterw. Port Coast. Ocean Eng.
**1999**, 125, 176–186. [Google Scholar] [CrossRef] - Dalrymple, R.; Liu, P. Waves over soft muds: A two-layer fluid model. J. Phys. Oceanogr.
**1978**, 8, 1121–1131. [Google Scholar] [CrossRef] [Green Version] - Ng, C.O. Water waves over a muddy bed: A two-layer stokes’ boundary layer model. Coast. Eng.
**2000**, 40, 221–242. [Google Scholar] [CrossRef] - Macpherson, H. The attenuation of water waves over a non-rigid bed. J. Fluid. Mech.
**1980**, 97, 721–742. [Google Scholar] [CrossRef] - Jiang, F.; Mehta, A.J. Mudbanks of the southwest coast of india iv: Mud viscoelastic properties. J. Coast. Res.
**1995**, 11, 918–926. [Google Scholar] - Zhao, Z.D.; Lian, J.J.; Shi, J.Z. Interactions among waves, current, and mud: Numerical and laboratory studies. Adv. Water Resour.
**2006**, 29, 1731–1744. [Google Scholar] [CrossRef] - Liu, P.L.F.; Chan, I.C. A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation. Coast. Eng.
**2007**, 54, 233–247. [Google Scholar] [CrossRef] - Mei, C.C.; Krotov, M.; Huang, Z.; Huhe, A. Short and long waves over a muddy seabed. J. Fluid. Mech.
**2010**, 643, 33–58. [Google Scholar] [CrossRef] [Green Version] - Mei, C.C.; Liu, K. A bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res.
**1987**, 92, 14581–14594. [Google Scholar] [CrossRef] - Laigle, D.; Lachamp, P.; Naaim, M. Sph-based numerical investigation of mudflow and other complex fluid flow interactions with structures. Comput. Geosci.
**2007**, 11, 297–306. [Google Scholar] [CrossRef] - Chan, I.; Liu, P. Responses of bingham-plastic muddy seabed to a surface solitary wave. J. Fluid. Mech.
**2009**, 618, 155–180. [Google Scholar] [CrossRef] - Minatti, L.; Pasculli, A. Sph numerical approach in modelling 2d muddy debris flow. In Proceedings of the International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Padova, Italy, 14–17 June 2011; pp. 467–475. [Google Scholar]
- Shakeel, A.; Kirichek, A.; Chassagne, C. Rheological analysis of natural and diluted mud suspensions. J. Non Newton. Fluid Mech.
**2020**, 286, 104434. [Google Scholar] [CrossRef] - Jain, M.; Mehta, A.J. Role of basic rheological models in determination of wave attenuation over muddy seabeds. Cont. Shelf. Res.
**2009**, 29, 642–651. [Google Scholar] [CrossRef] - Piedra-Cueva, I. On the response of a muddy bottom to surface water waves. J. Hydraul. Res.
**1993**, 31, 681–696. [Google Scholar] [CrossRef] - Almashan, N.; Dalrymple, R. Damping of waves propagating over a muddy bottom in deep water: Experiment and theory. J. Coast. Eng.
**2015**, 105, 34–46. [Google Scholar] [CrossRef] - Elgar, S.; Raubenheimer, B. Wave dissipation by muddy seafloors. Geophys. Res. Lett.
**2008**, 35. [Google Scholar] [CrossRef] [Green Version] - Torres-Freyermuth, A.; Hsu, T.J. On the dynamics of wave-mud interaction: A numerical study. J. Geophys. Res. Ocean
**2010**, 115. [Google Scholar] [CrossRef] [Green Version] - Hill, D.F.; Foda, M.A. Subharmonic resonance of short internal standing waves by progressive surface waves. J. Fluid Mech.
**1996**, 321, 217–233. [Google Scholar] [CrossRef] - Jamali, M.; Seymour, B.; Lawrence, G.A. Asymptotic analysis of a surfaceinterfacial wave interaction. Phys. Fluids
**2003**, 15, 47–55. [Google Scholar] [CrossRef] - Tahvildari, N.; Jamali, M. Cubic nonlinear analysis of interaction between a surface wave and two interfacial waves in an open two-layer fluid. Fluid Dyn. Res.
**2012**, 44, 055502. [Google Scholar] [CrossRef] - Tahvildari, N.; Kaihatu, J.M.; Saric, W.S. Generation of long subharmonic internal waves by surface waves. Ocean Model.
**2016**, 106, 12–26. [Google Scholar] [CrossRef] - Hill, D.F. The Faraday resonance of interfacial waves in weakly viscous fluids. Phys. Fluids
**2002**, 14, 158–169. [Google Scholar] [CrossRef] - Winterwerp, J.; De Graaff, R.; Groeneweg, J.; Luijendijk, A. Modelling of wave damping at guyana mud coast. Coast. Eng.
**2007**, 54, 249–261. [Google Scholar] [CrossRef] - Kranenburg, W.; Winterwerp, J.; de Boer, G.; Cornelisse, J.; Zijlema, M. Swan-mud: Engineering model for mud-induced wave damping. J. Hydraul. Eng.
**2011**, 137, 959–975. [Google Scholar] [CrossRef] - Rogers, W.; Orzech, M. Implementation and Testing of Ice and Mud Source Functions in Wavewatch III, Nrl Memorandum Report; Technical Report NRL/MR/7320-13-9462; Naval Research Laboratory: Washington, DC, USA, 2013. [Google Scholar]
- Kaihatu, J.M.; Tahvildari, N. The combined effect of wave-current interaction and mud-induced damping on nonlinear wave evolution. Ocean Model.
**2012**, 41, 22–34. [Google Scholar] [CrossRef] - Kemp, P.H.; Simons, R.R. The interaction of waves and a turbulent current: Waves propagating against the current. J. Fluid Mech.
**1983**, 130, 73–89. [Google Scholar] [CrossRef] [Green Version] - Soulsby, R.; Hamm, L.; Klopman, G.; Myrhaug, D.; Simons, R.; Thomas, G. Wave-current interaction within and outside the bottom boundary layer. Coast. Eng.
**1993**, 21, 41–69. [Google Scholar] [CrossRef] - Huang, Z.; Mei, C.C. Effects of surface waves on a turbulent current over a smooth or rough seabed. J. Fluid Mech.
**2003**, 497, 253–287. [Google Scholar] [CrossRef] - Tambroni, N.; Blondeaux, P.; Vittori, G. A simple model of wave–current interaction. J. Fluid Mech.
**2015**, 775, 328–348. [Google Scholar] [CrossRef] [Green Version] - Smith, R.; Sprinks, T. Scattering of surface waves by a conical island. J. Fluid Mech.
**1975**, 72, 373–384. [Google Scholar] [CrossRef] - Radder, A. On the parabolic equation method for water-wave propagation. J. Fluid Mech.
**1979**, 95, 159–176. [Google Scholar] [CrossRef] [Green Version] - Kaihatu, J.M.; Kirby, J.T. Nonlinear transformation of waves in finite water depth. Phys. Fluids
**1995**, 7, 1903–1914. [Google Scholar] [CrossRef] - Mendez, F.J.; Losada, I.J. A perturbation method to solve dispersion equations for water waves over dissipative media. Coast. Eng.
**2004**, 51, 81–89. [Google Scholar] [CrossRef] - Ng, C.O.; Chiu, H.S. Use of mathcad as a calculation tool for water waves over a stratified muddy bed. Coast. Eng. J.
**2009**, 51, 69–79. [Google Scholar] [CrossRef] - De Wit, P.J. Liquefaction of cohesive sediments caused by waves. Oceanogr. Lit. Rev.
**1996**, 3, 252. [Google Scholar] - Jiang, F.; Mehta, A.J. Mudbanks of the southwest coast of india. v: Wave attenuation. J. Coast. Res.
**1996**, 12, 890–897. [Google Scholar] - Soltanpour, M.; Samsami, F. A comparative study on the rheology and wave dissipation of kaolinite and natural hendijan coast mud, the persian gulf. J. Ocean Dyn.
**2011**, 61, 295–309. [Google Scholar] [CrossRef] - An, N.; Shibayama, T. Wave-current interaction with mud bed. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994; pp. 2913–2927. [Google Scholar]
- Rogers, W.E.; Holland, K.T. A study of dissipation of wind-waves by mud at cassino beach, brazil: Prediction and inversion. Cont. Shelf. Res.
**2009**, 29, 676–690. [Google Scholar] [CrossRef] - Kaihatu, J.M. Improvement of parabolic nonlinear dispersive wave model. J. Waterw. Port Coast. Ocean Eng.
**2001**, 127, 113–121. [Google Scholar] [CrossRef] - Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C. Similarity of the wind wave spectrum in finite depth water: 1. spectral form. J. Geophys. Res. Ocean.
**1985**, 90, 975–986. [Google Scholar] [CrossRef] - Ozdemir, C.E.; Hsu, T.J.; Balachandar, S. Direct numerical simulations of instability and boundary layer turbulence under a solitary wave. J. Fluid Mech.
**2013**, 731, 545–578. [Google Scholar] [CrossRef] [Green Version]

**Figure 3.**Surface wave damping rate as a function of frequency for different shear moduli of mud in the presence of co-propagating current with $U=+0.15$ m/s (solid line), without current (dot line), and in the presence of counter-propagating current with $U=-0.15$ m/s (dashed line), $\zeta =100$, $h=1.00$ m, ${d}_{m}=0.12$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 4.**Comparison between the attenuation rates from the present model and laboratory experiments of Zhao et al. [19], U > 0 indicates experiments where current are in the same direction, and U < 0 indicates the opposite.

**Figure 6.**Comparison between the attenuation rates from the present model and laboratory experiments of An and Shibayama [53].

**Figure 7.**Propagation of cnoidal wave spectrum over mud with shear moduli of G = 0–200 Pa. Blue-solid-x line: the initial spectrum at $x=0$, black-solid line: the spectrum with $U=+0.15$ m/s, black-dashed line: the spectrum for $U=-0.15$ m/s, and black-dot line: the spectrum with $U=0$, at the end of mud patch (x = 800 m), $h=1.00$ m, ${d}_{m}=0.12$ m, ${\rho}_{m}=1111$ kg/m${}^{3}$, and $\zeta $ = 100.

**Figure 8.**Evolution of a cnoidal wave spectrum with subharmonic interactions deactivated. Wave and mud parameters and water depth are the same as those in Figure 7.

**Figure 9.**Spatial variation of cnoidal wave H over viscous ($G=0$) and viscoelastic mud with shear moduli of G = 50–200 Pa. dot-line: $U=0$, solid-line: $U=$ +0.15 m/s, and dashed-line: $U=$−0.15 m/s. The mud patch is located at x = 300–800 m, $\zeta $ = 100, h = 1.00 m, ${d}_{m}=0.12$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 10.**Variation of surface wave damping rate with frequency for different values of mud shear modulus. Solid line: $Fr=+0.15$ m/s, dot line: $Fr=0$, and dashed line: $Fr=-0.15$ m/s, $\zeta =100$, $h=2.00$ m, ${d}_{m}=0.20$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 11.**Evolution of random wave spectra with peak frequency of ${f}_{p}=0.0625$ Hz for two values of mud shear modulus of $G=0,100$ and 200 Pa (${U}_{r}=2.08$, $h=2.00$ m, ${d}_{m}=0.20$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$, and $\zeta $ = 100). In (

**a**–

**c**): dot-line is initial spectra at $x=0$, solid-line is spectra at $x=21{L}_{p}$ for $Fr=+0.15$, and dashed-line is spectra at $x=21{L}_{p}$ for $Fr=-0.15$ (${L}_{p}$ is the wavelength of spectral peak). (

**d**–

**i**): energy density at spectral peak (dot-line), second (dashed line), and third (dashed-dot line) harmonic of the peak, and subharmonic of the peak (${f}_{p}/2$) (solid line).

**Figure 12.**Spatial variation of random wave ${H}_{rms}$ over viscoelastic mud with shear moduli of G = 0–200 Pa with $Fr=$ +0.15 (solid line), $Fr=$ 0 (dot line), and $Fr=$−0.15 (dashed line). Simulation parameters are the same as in Figure 11.

**Figure 13.**Spatial variation of random wave height, ${H}_{rms}$, over viscoelastic mud with shear moduli of G = 0–200 Pa in presence of currents with $Fr=$ +0.15 (solid line), $Fr=$ 0 (dot line), and $Fr=$−0.15 (dashed line). Simulation parameters are the same as those in Figure 12 but the spectral peak frequency is $0.28$ Hz.

**Figure 14.**Variation of surface wave damping rate with frequency for mud with shear moduli $G=0$, 100 and 200 Pa. Solid line: LC model, dashed line: Macpherson [17], $\zeta =100$, $h=0.8$ m, ${d}_{m}=0.4$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 15.**Propagation of cnoidal wave spectrum over mud with shear moduli $G=0,100,200$ Pa, $h=0.80$ m, ${d}_{m}=0.40$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 16.**Spatial variation of cnoidal wave height, H, over viscous ($G=0$) and viscoelastic mud with shear modulus of $G=200$ Pa, as normalized by incident wave height ${H}_{0}$, solid-line: LC, dashed-line: Macpherson [17]. The mud patch is located at x = 300–800 m, $\zeta $ = 100, h = 0.80 m, ${d}_{m}=0.40$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 17.**Spatial variation of random wave ${H}_{rms}$ over viscous ($G=0$) and viscoelastic mud with shear modulus of $G=200$ Pa, as normalized by incident wave height ${H}_{0}$, $\zeta $ = 100, h = 0.80 m, ${d}_{m}=0.40$ m, and ${\rho}_{m}=1111$ kg/m${}^{3}$.

**Figure 18.**Evolution of random wave spectrum over mud with LC and Macpherson [17] mechanisms, shear moduli $G=0,200$ Pa, $h=0.80$ m, ${d}_{m}=0.40$ m, ${\rho}_{m}=1111$ kg/m${}^{3}$, and $\zeta $ = 100.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sharifineyestani, E.; Tahvildari, N.
Nonlinear Wave Evolution in Interaction with Currents and Viscoleastic Muds. *J. Mar. Sci. Eng.* **2021**, *9*, 529.
https://doi.org/10.3390/jmse9050529

**AMA Style**

Sharifineyestani E, Tahvildari N.
Nonlinear Wave Evolution in Interaction with Currents and Viscoleastic Muds. *Journal of Marine Science and Engineering*. 2021; 9(5):529.
https://doi.org/10.3390/jmse9050529

**Chicago/Turabian Style**

Sharifineyestani, Elham, and Navid Tahvildari.
2021. "Nonlinear Wave Evolution in Interaction with Currents and Viscoleastic Muds" *Journal of Marine Science and Engineering* 9, no. 5: 529.
https://doi.org/10.3390/jmse9050529