Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China
Abstract
:1. Introduction
2. Data and Method
2.1. Observed Data
2.2. Model Description
2.2.1. Storm Surge Model along the SCC
2.2.2. Wind Field and Wind Pressure Model
3. Model Configuration and Validation
3.1. Model Configuration
3.2. Skill Metrics
3.3. Validation of Sea Surface Elevation
4. Results
4.1. Effect of Key Parameters in Wind Field and Pressure Filed on Storm Surge Model
4.1.1. Effect of Forward Speed
4.1.2. Effect of RMW
4.1.3. Effect of Inflow Angle
4.1.4. Effect of Central Pressure
4.2. Effect of Typhoon Path
4.3. Effect of Wind Intensity
4.4. Effect of Topography
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.Y.; Yasuda, T.; Mase, H. Numerical analysis of effects of tidal variations on storm surges and waves. Appl. Ocean Res. 2008, 30, 311–322. [Google Scholar] [CrossRef]
- Wolf, J. Coastal flooding: Impacts of coupled wave–surge–tide models. Nat. Hazards 2009, 49, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Weeks, E.; Blanchard, B.W. Storm surge induced flux through multiple tidal passes of Lake Pontchartrain estuary during Hurricanes Gustav and Ike. Estuar. Coast. Shelf Sci. 2010, 87, 517–525. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res. Oceans 2010, 115, C06020. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, Y.; Cao, A.; Liu, Q.; Lv, X. Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. Sci. China Earth Sci. 2016, 59, 1308–1316. [Google Scholar] [CrossRef]
- Heaps, N.S. Storm surges, 1967–1982. Geophys. J. Int. 1983, 74, 331–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.Z.; Shi, F.; Hong, H.S.; Shang, S.P.; Kirby, J.T. Tide-surge interaction intensified by the Taiwan Strait. J. Geophys. Res. Oceans 2010, 115, C06012. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, W.; Qiu, X.; Feng, X.; Gong, W. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea. Cont. Shelf. Res. 2017, 142, 32–49. [Google Scholar] [CrossRef]
- Pranzini, E.; Wetzel, L.; Williams, A.T. Aspects of coastal erosion and protection in Europe. J. Coast. Conserv. 2015, 19, 445–459. [Google Scholar] [CrossRef]
- Pope, J. Responding to coastal erosion and flooding damages. J. Coast. Res. 1997, 13, 704–710. [Google Scholar]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Woth, K.; Weisse, R.; Von Storch, H. Climate change and North Sea storm surge extremes: An ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn. 2006, 56, 3–15. [Google Scholar] [CrossRef]
- Mel, R.; Sterl, A.; Lionello, P. High resolution climate projection of storm surge at the Venetian coast. Nat. Hazards Earth Syst. 2013, 13, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S. Rising hazard of storm-surge flooding. Proc. Natl. Acad. Sci. USA 2017, 114, 11806–11808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mel, R.; Lionello, P. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dyn. 2014, 64, 1803–1814. [Google Scholar] [CrossRef]
- Flowerdew, J.; Horsburgh, K.; Wilson, C.; Mylne, K. Development and evaluation of an ensemble forecasting system for coastal storm surges. Q. J. R. Meteor. Soc. 2010, 136, 1444–1456. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R.; Milleer, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteor. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Chen, C.; Huang, H.; Beardsley, R.C.; Liu, H.; Xu, Q.; Cowles, G. A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. J. Geophys. Res. Oceans 2007, 112, 83–87. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Yin, B.; Yang, D. Effect of hurricane paths on storm surge response at Tianjin, China. Estuar. Coast. Shelf Sci. 2012, 106, 58–68. [Google Scholar] [CrossRef]
- Averkiev, A.S.; Klevannyy, K.A. A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont. Shelf Res. 2010, 30, 707–714. [Google Scholar] [CrossRef]
- Musinguzi, A.; Akbar, M.K. Effect of varying wind intensity, forward speed, and surface pressure on storm surges of hurricane Rita. J. Mar. Sci. Eng. 2021, 9, 128. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, D.; Zhang, J. Effects of nonlinear terms and topography in a storm surge model along the southeastern coast of China: A case study of Typhoon Chan-hom. Nat. Hazards 2021, 1–24. [Google Scholar] [CrossRef]
- Peng, M.; Xie, L.; Pietrafesa, L.J. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean Model. 2006, 14, 81–101. [Google Scholar] [CrossRef]
- Wong, B.; Toumi, R. Model study of the asymmetry in tropical cyclone-induced positive and negative surges. Atmos. Sci. Lett. 2016, 17, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ding, J.; Lu, M.; Wang, J.; Wang, Q. Analysis of the tropical cyclones landing in Zhejiang province during 1949–2009. Mar. Forecast. 2012, 29, 8–13. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Yang, J.; Chen, D.; Zheng, G.; Chen, N. Using satellite altimetry to calibrate the simulation of typhoon Seth storm surge off Southeast China. Remote Sens. 2018, 10, 657. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.; Zhang, J.; Wu, Y.; Jiao, X.; Qian, S. Sensitivities of modeling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea. Estuar. Coast. Shelf Sci. 2019, 231, 106460. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Jelesnianski, C.P.; Chen, J.; Shaffer, W.A. SLOSH: Sea, Lake, and Overland Surges from Hurricanes; US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 1992.
- Chen, W.; Liu, W.; Hsu, M. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat. Hazards Earth Syst. Sci. 2012, 12, 3799–3809. [Google Scholar] [CrossRef]
- Zhang, W.; Hong, H.; Shang, S.; Chen, D.; Chai, F. A two-way nested coupled tide-surge model for the Taiwan Strait. Cont. Shelf Res. 2007, 27, 1548–1567. [Google Scholar] [CrossRef]
- Ou, S.; Liau, J.; Hsu, T.; Tzang, S. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Eng. 2002, 29, 947–971. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Q.; Wu, Y. An empirical formula for maximum wave setup based on a coupled wave-current model. Ocean Eng. 2018, 147, 215–226. [Google Scholar] [CrossRef]
- Peng, M.; Xie, L.; Pietrafesa, L.J. A numerical study on hurricane-induced storm surge and inundation in Charleston Harbor, South Carolina. J. Geophys. Res. Oceans 2006, 111, C08017. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.; Song, J.; He, H.; Li, F. Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A 2019, 71, 1657552. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yi, Q.; Zhang, B. Research and applications of forecasting model of typhoon surges in China Seas. Adv. Water Sci. 1991, 2, 1–10. (In Chinese) [Google Scholar]
- Yu, C.; Yang, Y.; Yin, X.; Sun, M.; Shi, Y. Impact of Enhanced wave-induced mixing on the ocean upper mixed layer during typhoon Nepartak in a regional model of the Northwest Pacific Ocean. Remote Sens. 2020, 12, 2808. [Google Scholar] [CrossRef]
- Fujita, T. Pressure distribution within typhoon. Geophys. Mag. 1952, 23, 437–451. [Google Scholar]
- Takahashi, K. Distribution of pressure and wind in a typhoon. J. Meteor. Soc. Jpn. 1939, 17, 417–421. [Google Scholar]
- Willoughby, H.E. Gradient balance in tropical cyclones. J. Atmos. Sci. 1990, 47, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Ueno, T. Numerical computations of the storm surges in Tosa Bay. J. Oceanogr. Soc. Jpn. 1981, 37, 61–73. [Google Scholar] [CrossRef]
- Graham, H.E.; Nunn, D.E. Meteorological Conditions Pertinent to Standard Project Hurricane; Report No. 3; Atlantic and Gulf Coasts of United States, National Hurricane Research Project; US Weather Service: Washington, DC, USA, 1959.
- Allen, J.I.; Somerfield, P.J.; Gilbert, F.J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 2007, 64, 3–14. [Google Scholar] [CrossRef]
- Murty, T.S.; Neralla, V.R. On the recurvature of tropical cyclones and the storm surge problem in Bangladesh. Nat. Hazards 1992, 6, 275–279. [Google Scholar] [CrossRef]
- Bernier, N.B.; Thompson, K.R. Predicting the frequency of storm surges and extreme sea levels in the Northwest Atlantic. J. Geophys. Res. Oceans 2006, 111, C10009. [Google Scholar] [CrossRef] [Green Version]
- Irish, J.L.; Resio, D.T. A hydrodynamics-based surge scale for hurricanes. Ocean Eng. 2010, 37, 69–81. [Google Scholar] [CrossRef]
ID | Station | Wind Event | Record Time | Longitude (°E) | Latitude (°N) |
---|---|---|---|---|---|
DS | Daishan | Chan-hom | 9 July 2015 (00:00)–12 July 2015 (18:00) | 122.22 | 30.28 |
LH | Liuheng | Chan-hom | 9 July 2015 (00:00)–12 July 2015 (18:00) | 122.06 | 29.77 |
SS | Sansha | Mireille/Herb | 25 September 1991 (00:00)–28 September 1991 (07:00) 30 July 1996 (00:00)–2 August 1996 (18:00) | 120.22 | 26.92 |
PT | Pingtan | Mireille | 25 September 1991 (00:00)–28 September 1991 (07:00) | 119.83 | 25.47 |
SC | Shacheng | Herb | 30 July 1996 (00:00)–2 August 1996 (18:00) | 120.28 | 27.28 |
DJS | Dajishan | Winnie | 16 August 1997 (00:00)–19 August 1997 (18:00) | 122.17 | 30.82 |
DH | Dinghai | Winnie | 16 August 1997 (00:00)–19 August 1997 (18:00) | 122.10 | 30.02 |
Case Name | Forward Speed (m/s) | RMW (km) | Inflow Angle (Degree) | Central Pressure (hPa) |
---|---|---|---|---|
1.1 | 3 | 50 | 20 | 950 |
1.2 | 5 | 50 | 20 | 950 |
1.3 | 7 | 50 | 20 | 950 |
1.4 | 10 | 50 | 20 | 950 |
2.1 | 7 | 30 | 20 | 950 |
2.2 | 7 | 50 | 20 | 950 |
2.3 | 7 | 70 | 20 | 950 |
2.4 | 7 | 90 | 20 | 950 |
3.1 | 7 | 50 | 10 | 950 |
3.2 | 7 | 50 | 20 | 950 |
3.3 | 7 | 50 | 30 | 950 |
3.4 | 7 | 50 | 40 | 950 |
4.1 | 7 | 50 | 20 | 920 |
4.2 | 7 | 50 | 20 | 930 |
4.3 | 7 | 50 | 20 | 940 |
4.4 | 7 | 50 | 20 | 950 |
4.5 | 7 | 50 | 20 | 960 |
4.6 | 7 | 50 | 20 | 970 |
Case Name | DJS | DH | LH | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
1.1 | 0.61 | −0.52 | 101 | 15 | 1.11 | −0.46 | 98 | 59 | 1.17 | −0.82 | 98 | 30 |
1.2 | 0.63 | −0.42 | 59 | 33 | 0.97 | −0.45 | 57 | 54 | 1.05 | −1.14 | 56 | −9 |
1.3 | 0.50 | −0.48 | 41 | 4 | 0.75 | −0.49 | 39 | 35 | 0.86 | −0.83 | 39 | 3 |
1.4 | 0.41 | −0.46 | 29 | −12 | 0.68 | −0.48 | 27 | 29 | 0.80 | −0.38 | 29 | 53 |
2.1 | 0.30 | −0.26 | 42 | 13 | 0.44 | −0.28 | 39 | 36 | 0.55 | −0.37 | 39 | 33 |
2.2 | 0.50 | −0.45 | 41 | 10 | 0.75 | −0.46 | 39 | 39 | 0.86 | −0.83 | 39 | 3 |
2.3 | 0.64 | −0.76 | 41 | −19 | 0.94 | −0.63 | 39 | 33 | 1.04 | −1.12 | 39 | −8 |
2.4 | 0.78 | −0.87 | 40 | −12 | 1.09 | −0.85 | 39 | 22 | 1.14 | −1.22 | 39 | −7 |
3.1 | 0.47 | −0.50 | 41 | −6 | 0.71 | −0.53 | 39 | 25 | 0.84 | −0.87 | 38 | −4 |
3.2 | 0.50 | −0.48 | 41 | 4 | 0.75 | −0.49 | 39 | 35 | 0.86 | −0.83 | 39 | 3 |
3.3 | 0.51 | −0.43 | 41 | 16 | 0.76 | −0.44 | 39 | 42 | 0. 86 | −0.79 | 39 | 8 |
3.4 | 0.52 | −0.35 | 41 | 33 | 0.77 | −0.37 | 39 | 52 | 0.85 | −0.67 | 39 | 21 |
4.1 | 0.84 | −0.79 | 41 | 6 | 1.26 | −0.73 | 39 | 42 | 1.39 | −1.47 | 39 | −6 |
4.2 | 0.74 | −0.64 | 41 | 14 | 1.08 | −0.62 | 39 | 43 | 1.21 | −1.21 | 39 | 0 |
4.3 | 0.62 | −0.52 | 41 | 16 | 0.92 | −0.55 | 39 | 40 | 1.03 | −1.05 | 39 | −2 |
4.4 | 0.50 | −0.48 | 41 | 4 | 0.75 | −0.49 | 39 | 35 | 0.86 | −0.83 | 39 | 3 |
4.5 | 0.38 | −0.37 | 41 | 3 | 0.58 | −0.41 | 39 | 29 | 0.68 | −0.66 | 39 | 3 |
4.6 | 0.27 | −0.26 | 41 | 4 | 0.43 | −0.30 | 39 | 30 | 0.52 | −0.44 | 39 | 15 |
Case Name | SC | SS | PT | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
1.1 | 0.26 | −0.57 | 68 | −119 | 0.27 | −0.50 | 69 | −85 | 0.27 | −0.41 | 71 | −52 |
1.2 | 0.20 | −0.43 | 42 | −115 | 0.19 | −0.41 | 44 | −116 | 0.18 | −0.33 | 40 | −83 |
1.3 | 0.13 | −0.28 | 31 | −115 | 0.17 | −0.30 | 27 | −76 | 0.13 | −0.25 | 29 | −92 |
1.4 | 0.15 | −0.27 | 10 | −80 | 0.16 | −0.29 | 15 | −81 | 0.12 | −0.25 | 24 | −108 |
2.1 | 0.10 | −0.16 | 86 | −60 | 0.12 | −0.16 | 15 | −33 | 0.08 | −0.14 | 30 | −75 |
2.2 | 0.13 | −0.28 | 86 | −115 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
2.3 | 0.17 | −0.43 | 28 | −153 | 0.20 | −0.42 | 15 | −110 | 0.18 | −0.35 | 29 | −94 |
2.4 | 0.22 | −0.57 | 28 | −159 | 0.23 | −0.56 | 15 | −143 | 0.23 | −0.44 | 29 | −91 |
3.1 | 0.15 | −0.30 | 28 | −100 | 0.17 | −0.31 | 15 | −82 | 0.15 | −0.25 | 29 | −67 |
3.2 | 0.13 | −0.28 | 28 | −115 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
3.3 | 0.10 | −0.30 | 25 | −200 | 0.17 | −0.29 | 15 | −71 | 0.11 | −0.24 | 29 | −118 |
3.4 | 0.11 | −0.28 | 28 | −155 | 0.16 | −0.29 | 15 | −81 | 0.10 | −0.25 | 29 | −150 |
4.1 | 0.20 | −0.51 | 28 | −155 | 0.23 | −0.54 | 15 | −135 | 0.21 | −0.41 | 29 | −95 |
4.2 | 0.17 | −0.44 | 28 | −159 | 0.21 | −0.44 | 15 | −110 | 0.19 | −0.37 | 29 | −95 |
4.3 | 0.16 | −0.38 | 28 | −138 | 0.19 | −0.38 | 15 | −100 | 0.16 | −0.30 | 29 | −88 |
4.4 | 0.13 | −0.28 | 28 | −115 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
4.5 | 0.11 | −0.22 | 28 | −100 | 0.14 | −0.23 | 15 | −64 | 0.11 | −0.20 | 29 | −82 |
4.6 | 0.09 | −0.17 | 28 | −89 | 0.12 | −0.18 | 15 | −50 | 0.09 | −0.15 | 29 | −67 |
Case Name | Path | Wind Intensity | Bathymetry |
---|---|---|---|
5.1 | Chan-hom | 100% | Default bathymetry (h) |
5.2 | Chan-hom | 50% | h |
5.3 | Chan-hom | 120% | h |
5.4 | Chan-hom | 100% | h × 0.25 |
5.5 | Chan-hom | 100% | h × 0.5 |
5.6 | Chan-hom | 100% | h × 0.75 |
6.1 | Mireille | 100% | h |
6.2 | Mireille | 50% | h |
6.3 | Mireille | 120% | h |
6.4 | Mireille | 100% | h × 0.25 |
6.5 | Mireille | 100% | h × 0.5 |
6.6 | Mireille | 100% | h × 0.75 |
7.1 | Herb | 100% | h |
7.2 | Herb | 50% | h |
7.3 | Herb | 120% | h |
7.4 | Herb | 100% | h × 0.25 |
7.5 | Herb | 100% | h × 0.5 |
7.6 | Herb | 100% | h × 0.75 |
8.1 | Winnie | 100% | h |
8.2 | Winnie | 50% | h |
8.3 | Winnie | 120% | h |
8.4 | Winnie | 100% | h × 0.25 |
8.5 | Winnie | 100% | h × 0.5 |
8.6 | Winnie | 100% | h × 0.75 |
Path | Station | Group One | Group Two | Group Three | Group Two + Group Three |
---|---|---|---|---|---|
Chan-hom | DJS | 0.50 | 0.40 | 0.12 | 0.52 |
DH | 0.75 | 0.61 | 0.15 | 0.76 | |
LH | 0.86 | 0.66 | 0.22 | 0.88 | |
SC | 0.13 | 0.14 | 0.01 | 0.15 | |
SS | 0.17 | 0.01 | 0.16 | 0.17 | |
PT | 0.14 | 0.07 | 0.07 | 0.14 | |
Mireille | DJS | 0.14 | 0.11 | 0.06 | 0.17 |
DH | 0.16 | 0.01 | 0.15 | 0.16 | |
LH | 0.21 | 0.01 | 0.21 | 0.22 | |
SC | 0.24 | 0.01 | 0.24 | 0.25 | |
SS | 0.11 | 0.03 | 0.09 | 0.12 | |
PT | 0.12 | 0.01 | 0.11 | 0.12 | |
Herb | DJS | 0.19 | 0.01 | 0.18 | 0.19 |
DH | 0.13 | 0.03 | 0.10 | 0.14 | |
LH | 0.16 | 0.01 | 0.16 | 0.17 | |
SC | 0.53 | 0.45 | 0.10 | 0.55 | |
SS | 0.72 | 0.60 | 0.14 | 0.74 | |
PT | 0.88 | 0.45 | 0.44 | 0.89 | |
Winnie | DJS | 0.22 | 0.15 | 0.07 | 0.22 |
DH | 0.42 | 0.29 | 0.14 | 0.43 | |
LH | 0.58 | 0.48 | 0.11 | 0.59 | |
SC | 0.18 | 0.13 | 0.04 | 0.17 | |
SS | 0.17 | 0.11 | 0.06 | 0.17 | |
PT | 0.17 | 0.10 | 0.07 | 0.17 |
Case Name | Path | Remark |
---|---|---|
9.0 | default (Chan-hom) | Ori |
9.1 | move rightward 2° in longitude direction | lon + 2 |
9.2 | move rightward 1.5° in longitude direction | lon + 1.5 |
9.3 | move rightward 1° in longitude direction | lon + 1 |
9.4 | move rightward 0.5° in longitude direction | lon + 0.5 |
9.5 | move leftward 0.5° in longitude direction | Lon − 0.5 |
9.6 | move leftward 1° in longitude direction | Lon − 1 |
9.7 | move leftward 1.5° in longitude direction | Lon − 1.5 |
9.8 | move leftward 2° in longitude direction | Lon − 2 |
Case Name | DJS | DH | LH | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
9.0 | 0.50 | −0.48 | 41 | 4 | 0.75 | −0.49 | 39 | 35 | 0.86 | −0.82 | 39 | 5 |
9.1 | 0.26 | −0.29 | 71 | −12 | 0.26 | −0.24 | 40 | 8 | 0.25 | −0.24 | 40 | 4 |
9.2 | 0.29 | −0.28 | 71 | 3 | 0.33 | −0.23 | 40 | 30 | 0.31 | −0.24 | 40 | 23 |
9.3 | 0.27 | −0.28 | 78 | −4 | 0.37 | −0.24 | 40 | 35 | 0.31 | −0.22 | 40 | 29 |
9.4 | 0.35 | −0.24 | 41 | 31 | 0.47 | −0.21 | 39 | 55 | 0.50 | −0.29 | 39 | 42 |
9.5 | 0.65 | −0.96 | 41 | −48 | 1.06 | −0.75 | 39 | 29 | 1.29 | −1.07 | 38 | 17 |
9.6 | 0.86 | −1.03 | 45 | −20 | 0.96 | −0.83 | 39 | 14 | 1.34 | −0.81 | 39 | 40 |
9.7 | 0.66 | −1.94 | 45 | −194 | 0.44 | −0.79 | 48 | −80 | 0.75 | −0.82 | 39 | −9 |
9.8 | 0.40 | −1.53 | 106 | −283 | 0.34 | −0.63 | 108 | −85 | 0.39 | −0.66 | 35 | −69 |
Case Name | SC | SS | PT | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
9.0 | 0.13 | −0.28 | 94 | −115 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
9.1 | 0.11 | −0.19 | 14 | −73 | 0.10 | −0.20 | 14 | −100 | 0.11 | −0.16 | 15 | −45 |
9.2 | 0.11 | −0.24 | 14 | −118 | 0.12 | −0.25 | 17 | −108 | 0.12 | −0.19 | 15 | −58 |
9.3 | 0.14 | −0.27 | 88 | −93 | 0.15 | −0.26 | 13 | −73 | 0.11 | −0.21 | 15 | −91 |
9.4 | 0.17 | −0.29 | 88 | −71 | 0.16 | −0.27 | 15 | −69 | 0.11 | −0.25 | 28 | −127 |
9.5 | 0.15 | −0.39 | 28 | −160 | 0.15 | −0.38 | 15 | −153 | 0.16 | −0.26 | 29 | −63 |
9.6 | 0.19 | −0.44 | 10 | −132 | 0.16 | −0.39 | 25 | −144 | 0.18 | −0.28 | 29 | −56 |
9.7 | 0.25 | −0.34 | 10 | −36 | 0.20 | −0.35 | 25 | −75 | 0.19 | −0.27 | 28 | −42 |
9.8 | 0.29 | −0.31 | 10 | −7 | 0.26 | −0.29 | 27 | −12 | 0.21 | −0.20 | 24 | 5 |
Case Name | DJS | DH | LH | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
5.1 | 0.50 | −0.48 | 41 | 4 | 0.75 | −0.49 | 39 | 35 | 0.86 | −0.82 | 39 | 5 |
5.2 | 0.23 | −0.07 | 43 | 70 | 0.27 | −0.11 | 40 | 59 | 0.32 | −0.08 | 39 | 75 |
5.3 | 0.73 | −0.75 | 41 | −3 | 1.09 | −0.64 | 39 | 41 | 1.21 | −1.40 | 39 | −16 |
6.1 | 0.14 | −0.07 | 50 | 50 | 0.16 | −0.10 | 12 | 38 | 0.21 | −0.09 | 8 | 57 |
6.2 | 0.10 | −0.09 | 16 | 10 | 0.16 | −0.10 | 12 | 38 | 0.21 | −0.09 | 8 | 57 |
6.3 | 0.18 | −0.07 | 50 | 61 | 0.19 | −0.10 | 48 | 47 | 0.21 | −0.09 | 8 | 57 |
7.1 | 0.19 | −0.07 | 16 | 63 | 0.13 | −0.05 | 38 | 62 | 0.16 | −0.07 | 8 | 56 |
7.2 | 0.18 | −0.08 | 16 | 56 | 0.11 | −0.05 | 38 | 55 | 0.16 | −0.07 | 8 | 56 |
7.3 | 0.19 | −0.08 | 16 | 58 | 0.14 | −0.05 | 51 | 64 | 0.16 | −0.07 | 50 | 56 |
8.1 | 0.18 | −0.14 | 127 | 22 | 0.30 | −0.13 | 45 | 57 | 0.48 | −0.16 | 45 | 67 |
8.2 | 0.14 | −0.09 | 14 | 36 | 0.18 | −0.06 | 41 | 67 | 0.18 | −0.07 | 41 | 61 |
8.3 | 0.33 | −0.22 | 44 | 33 | 0.57 | −0.18 | 42 | 68 | 0.86 | −0.19 | 45 | 78 |
Case Name | SC | SS | PT | |||||||||
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
5.1 | 0.13 | −0.28 | 94 | −115 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
5.2 | 0.08 | −0.11 | 25 | −38 | 0.16 | −0.13 | 15 | 19 | 0.09 | −0.10 | 15 | −11 |
5.3 | 0.18 | −0.48 | 86 | −167 | 0.21 | −0.50 | 95 | −138 | 0.17 | −0.37 | 29 | −118 |
6.1 | 0.24 | −0.13 | 10 | 46 | 0.11 | −0.11 | 21 | 0 | 0.12 | −0.04 | 13 | 67 |
6.2 | 0.24 | −0.13 | 10 | 46 | 0.11 | −0.11 | 10 | 0 | 0.12 | −0.08 | 13 | 33 |
6.3 | 0.24 | −0.13 | 10 | 46 | 0.16 | −0.11 | 44 | 31 | 0.14 | −0.04 | 30 | 71 |
7.1 | 0.53 | −0.12 | 35 | 77 | 0.72 | −0.11 | 35 | 85 | 0.88 | −0.10 | 37 | 89 |
7.2 | 0.20 | −0.12 | 36 | 40 | 0.23 | −0.11 | 35 | 52 | 0.54 | −0.04 | 38 | 93 |
7.3 | 0.79 | −0.15 | 36 | 81 | 1.01 | −0.13 | 35 | 87 | 1.11 | −0.20 | 37 | 82 |
8.1 | 0.13 | −0.49 | 35 | −277 | 0.14 | −0.45 | 35 | −221 | 0.14 | −0.25 | 37 | −79 |
8.2 | 0.16 | −0.15 | 40 | 6 | 0.15 | −0.12 | 40 | 20 | 0.13 | −0.11 | 15 | 15 |
8.3 | 0.24 | −0.69 | 35 | −188 | 0.25 | −0.65 | 35 | −160 | 0.23 | −0.35 | 38 | −52 |
Case Name | LH | SS | PT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | Surge (m) | Fall (m) | Time (h) | AI (%) | |
5.1 | 0.86 | −0.82 | 39 | 5 | 0.17 | −0.30 | 15 | −76 | 0.13 | −0.26 | 29 | −100 |
5.4 | 1.90 | −0.47 | 39 | 75 | 0.15 | −1.15 | 119 | −667 | 0.22 | −0.62 | 37 | −182 |
5.5 | 1.33 | −0.80 | 39 | 40 | 0.15 | −0.71 | 102 | −373 | 0.17 | −0.45 | 33 | −165 |
5.6 | 0.99 | −0.94 | 39 | 5 | 0.15 | −0.42 | 33 | −180 | 0.17 | −0.31 | 33 | −82 |
6.1 | 0.21 | −0.09 | 8 | 57 | 0.11 | −0.11 | 21 | 0 | 0.12 | −0.04 | 13 | 67 |
6.4 | 0.30 | −0.06 | 72 | 80 | 0.23 | −0.08 | 42 | 65 | 0.16 | −0.04 | 79 | 75 |
6.5 | 0.22 | −0.12 | 46 | 45 | 0.16 | −0.09 | 45 | 44 | 0.14 | −0.08 | 40 | 43 |
6.6 | 0.16 | −0.14 | 49 | 13 | 0.13 | −0.09 | 35 | 31 | 0.12 | −0.09 | 25 | 25 |
7.1 | 0.16 | −0.07 | 8 | 56 | 0.72 | −0.11 | 35 | 85 | 0.88 | −0.10 | 37 | 89 |
7.4 | 0.16 | −0.07 | 37 | 56 | 2.28 | −0.14 | 38 | 94 | 1.99 | −0.15 | 38 | 92 |
7.5 | 0.18 | −0.10 | 55 | 44 | 1.35 | −0.16 | 37 | 88 | 1.44 | −0.13 | 38 | 91 |
7.6 | 0.15 | −0.07 | 52 | 53 | 0.89 | −0.10 | 36 | 89 | 1.10 | −0.13 | 37 | 88 |
8.1 | 0.48 | −0.16 | 45 | 67 | 0.14 | −0.45 | 35 | −221 | 0.14 | −0.25 | 37 | −79 |
8.4 | 1.77 | −0.15 | 45 | 92 | 0.19 | −1.98 | 60 | −942 | 0.30 | −0.74 | 42 | −147 |
8.5 | 1.0 | −0.16 | 43 | 84 | 0.22 | −0.92 | 36 | −318 | 0.25 | −0.58 | 39 | −132 |
8.6 | 0.68 | −0.14 | 43 | 79 | 0.20 | −0.62 | 36 | −210 | 0.21 | −0.30 | 36 | −43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, D.; Niu, H.; Qiao, W.; Jiao, X.; Zhang, X.; Zhang, J. Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China. J. Mar. Sci. Eng. 2021, 9, 458. https://doi.org/10.3390/jmse9050458
Chu D, Niu H, Qiao W, Jiao X, Zhang X, Zhang J. Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China. Journal of Marine Science and Engineering. 2021; 9(5):458. https://doi.org/10.3390/jmse9050458
Chicago/Turabian StyleChu, Dongdong, Haibo Niu, Wenli Qiao, Xiaohui Jiao, Xilin Zhang, and Jicai Zhang. 2021. "Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China" Journal of Marine Science and Engineering 9, no. 5: 458. https://doi.org/10.3390/jmse9050458
APA StyleChu, D., Niu, H., Qiao, W., Jiao, X., Zhang, X., & Zhang, J. (2021). Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China. Journal of Marine Science and Engineering, 9(5), 458. https://doi.org/10.3390/jmse9050458