Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection and Sampling Design
2.2. Data Analysis
2.2.1. Spatial Variability of Water Conditions and Habitats
2.2.2. Fish and Diversity
2.2.3. Fish Assemblage Structure
3. Results
3.1. Spatial Variability of Water Conditions and Habitats
3.2. Fish and Diversity
3.3. Fish Assemblage Structure
4. Discussion
4.1. Diversity
4.2. Structure of Fish Assemblages
4.2.1. Characteristic Species
4.2.2. Fish Assemblages
5. Conclusions and Implications for Management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandin, S.A.; Vermeij, M.J.; Hurlbert, A.H. Island biogeography of Caribbean coral reef fish. Glob. Ecol. Biogeogr. 2008, 17, 770–777. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Ballesteros, E.; Caselle, J.E.; Gaymer, C.F.; Palma, A.T.; Petit, I.; Varas, E.; Wilson, A.M.; Sala, E. Marine biodiversity in Juan Fernández and Desventuradas islands, Chile: Global endemism hotspots. PLoS ONE 2016. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P. Chapter 20: Diversity and Biological Invasions of Oceanic Islands. In Biodiversity; Wilson, E., Peter, F., Eds.; National Academies Press (US): Washington, DC, USA, 1988. [Google Scholar]
- Wilson, S.K.; Fisher, R.; Pratchett, M.S.; Graham, N.A.; Dulvy, N.K.; Turner, R.A.; Cakacaka, A.; Polunin, N.V. Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol. Appl. 2010. [Google Scholar] [CrossRef] [Green Version]
- Edgar, G.J.; Banks, S.; Farina, J.M.; Calvopina, M.; Martinez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 2004, 31, 1107–1124. [Google Scholar] [CrossRef]
- Quimbayo, J.P.; Dias, M.S.; Kulbicki, M.; Mendes, T.C.; Lamb, R.W.; Johnson, A.F.; Aburto-Oropeza, O.; Alvarado, J.J.; Bocos, A.A.; Ferreira, C.E.; et al. Determinants of reef fish assemblages in tropical Oceanic islands. Ecography 2019, 42, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Palacios, D.M. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: Regional and local influences. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 43–57. [Google Scholar] [CrossRef]
- Harris, M.P. Breeding seasons of sea-birds in the Galapagos Islands. J. Zool. 1969, 159, 145–165. [Google Scholar] [CrossRef]
- Jennings, S.; Brierly, A.; Walker, J. The inshore fish assemblages of the Galápagos archipelago. Biol. Conserv. 1994, 70, 49–57. [Google Scholar] [CrossRef]
- Llerena-Martillo, Y.; Peñaherrera-Palma, C.; Espinoza, E.R. Fish assemblages in three fringed mangrove bays of Santa Cruz Island, Galapagos marine reserve. Rev. Biol. Trop. 2018, 66, 674–687. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.R. Coastal Nutrient and Water Budget Assessments for Puerto Ayora, Academy Bay, Santa Cruz Island; Technical Report; The Pennsylvania State University: State College, PA, USA, 2008. [Google Scholar]
- Hardter, U.; Oña, I.; Butt, K.; Chitwood, J. Waste Management Blueprint for the Galapagos Islands; Technical Report; WWF and Toyota: Quito, Ecuador, 2010. [Google Scholar]
- Ministry of Tourism of Ecuador. Observatorio de Turismo de Galápagos. Available online: www.turismo.gob.ec/ (accessed on 12 September 2019).
- Riascos-Flores, L.; Bruneel, S.; Van der Heyden, C.; Deknock, A.; Van Echelpoel, W.; Forio, M.; De Saeyer, N.; Vanden Berghe, W.; Spanoghe, P.; Bermudez, R.; et al. Polluted paradise: Occurrence of pesticide residues within the urban coastal zones of Santa Cruz and Isabela (Galapagos, Ecuador). Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Boersma, P.D.; Parrish, J.K. Limiting abuse: Marine protected areas, a limited solution. Ecol. Econ. 1999, 31, 287–304. [Google Scholar] [CrossRef]
- Mateus, C.; Guerrero, C.A.; Quezada, G.; Lara, D.; Ochoa-Herrera, V. An integrated approach for evaluating water quality between 2007-2015 in Santa Cruz Island in the Galapagos Archipelago. Water 2019, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Pollock, L.J.; Gueguen, M.; Münkemüller, T. From species distributions to meta-communities. Ecol. Lett. 2015, 18, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Bruneel, S.; Gobeyn, S.; Verhelst, P.; Reubens, J.; Moens, T.; Goethals, P. Implications of movement for species distribution models—Rethinking environmental data tools. Sci. Total. Environ. 2018, 628–629, 893–905. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Leibold, M.A.; Chase, J.M.; Ernest, S.K. Community assembly and the functioning of ecosystems: How metacommunity processes alter ecosystems attributes. Ecology 2017, 98, 909–919. [Google Scholar] [CrossRef]
- Houvenaghel, G. Oceanographic Conditions in the Galapagos Archipelago and Their Relationships with Life on the Islands. In Upwelling Ecosystems; Boje, R., Tomczak, M., Eds.; Springer: Berlin, Germany, 1978; pp. 181–200. [Google Scholar] [CrossRef]
- Liu, X.; Meng, W.; Liang, G.; Li, K.; Xu, W.; Huang, L.; Yan, J. Available phosphorus in forest soil increases with soil nitrogen but not total phosphorus: Evidence from subtropical forests and a pot experiment. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Okey, T.A.; Banks, S.; Born, A.F.; Bustamante, R.H.; Calvopiña, M.; Edgar, G.J.; Espinoza, E.; Fariña, J.M.; Garske, L.E.; Reck, G.K.; et al. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 2004, 172, 383–401. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INEC). Censo de Población y Vivienda Galápagos 2015; Technical Report; INEC: Madrid, Span, 2015.
- Mallet, D.; Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 2014, 154, 44–62. [Google Scholar] [CrossRef]
- Wartenberg, R.; Booth, A.J. Video transects are the most appropriate underwater visual census method for surveying high-latitude coral reef fishes in the southwestern Indian Ocean. Mar. Biodivers. 2015, 45, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, D.; Leleu, K.; Mou-Tham, G.; Guillemot, N.; Chabanet, P. Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages. Fish. Res. 2011, 107, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.D.; Walsh, W.J.; Tissot, B.N.; Hallacher, L.E. Impact of observers’ experience level on counts of fishes in underwater visual surveys. Mar. Ecol. Prog. Ser. 2006, 310, 185–191. [Google Scholar] [CrossRef]
- Guisan, A.; Lehmann, A.; Ferrier, S.; Austin, M.; Overton, J.M.C.; Aspinall, R.; Hastie, T. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 2006, 43, 386–392. [Google Scholar] [CrossRef]
- Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 2008, 17, 59–71. [Google Scholar] [CrossRef]
- Legendre, P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: Manual/Tutorial; PRIMER-E Ltd.: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Legendre, P.; Andersson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Gray, J.S. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. J. Exp. Mar. Biol. Ecol. 2000, 250, 23–49. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; Macmillan: New York, NY, USA, 1975; p. 385. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Malden, MA, USA, 2004. [Google Scholar]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R. Island Biogeography: Ecology, Evolution, and Conservation; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J.; Borregaard, M.K.; Triantis, K.A. Island biogeography: Taking the long view of nature’s laboratories. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Braak, C.J.; Prentice, C.I. A Theory of Gradient Analysis. Adv. Ecol. Res. 1988, 18, 271–317. [Google Scholar] [CrossRef]
- Anderson, M.J.; Santana-Garcon, J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol. Lett. 2015, 18, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Robinson, L.M.; Elith, J.; Hobday, A.J.; Pearson, R.G.; Kendall, B.E.; Possingham, H.P.; Richardson, A.J. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 2011, 20, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Luiz, O.J.; Mendes, T.C.; Barneche, D.R.; Ferreira, C.G.; Noguchi, R.; Villaça, R.C.; Rangel, C.A.; Gasparini, J.L.; Ferreira, C.E. Community structure of reef fishes on a remote oceanic island (St Peter and St Paul’s Archipelago, equatorial Atlantic): The relative influence of abiotic and biotic variables. Mar. Freshw. Res. 2015, 66, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Quimbayo, J.P.; Mendes, T.C.; Kulbicki, M.; Floeter, S.R.; Zapata, F.A. Unusual reef fish biomass and functional richness at Malpelo, a remote island in the Tropical Eastern Pacific. Environ. Biol. Fishes 2017, 100, 149–162. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Ginsberg, J.R. The scaling of geographic ranges: Implications for species distribution models. Landsc. Ecol. 2016, 31, 1195–1208. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Johnston, E.L.; Roberts, D.A. Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environ. Pollut. 2009, 157, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Burgos, L. Estudio comparativo de la calidad del agua en el área marino costera de bahía academia, caleta aeolian y puerto villamil- islas galápagos- junio-julio 2007. Acta Ocean. Pacífico 2009, 15, 165–173. [Google Scholar]
- Schaeffer, B.A.; Morrison, J.M.; Kamykowski, D.; Feldman, G.C.; Xie, L.; Liu, Y.; Sweet, W.; McCulloch, A.; Banks, S. Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote. Sens. Environ. 2008, 112, 3044–3054. [Google Scholar] [CrossRef]
- Werdeman, J.L. Effects of Populated Towns on Water Quality in Neighboring Galàpagos Bays; Technical Report; University of Washington: Washington, DC, USA, 2006. [Google Scholar]
- Stumpf, C.; Gonzalez, R.; Noble, R. Investigating the Coastal Water Quality of the Galapagos Islands, Ecuador. In Social and Ecological Interactions in the Galapagos Islands; Walsh, S., Mena, C., Eds.; Springer: New York, NY, USA, 2013; Chapter 10; p. 255. [Google Scholar]
- Hobbs, J.P.; Jones, G.P.; Munday, P.L. Extinction Risk in Endemic Marine Fishes. Conserv. Biol. 2011. [Google Scholar] [CrossRef]
- Giddens, J.; Goodell, W.; Friedlander, A.; Salinas-de león, P. Patterns in Bathyal Demersal Biodiversity and Community Composition Around Archipelagos in the Tropical Eastern Pacific. Front. Mar. Sci. 2019. [Google Scholar] [CrossRef]
- Stuart-Smith, R.D.; Bates, A.E.; Lefcheck, J.S.; Duffy, J.E.; Baker, S.C.; Thomson, R.J.; Stuart-Smith, J.F.; Hill, N.A.; Kininmonth, S.J.; Airoldi, L.; et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 2013, 501, 539–542. [Google Scholar] [CrossRef]
Variable Series | Both Islands | Santa Cruz | Floreana |
---|---|---|---|
Water | 0.85 | 0.75 | 0.03 |
Habitat | 0.66 | 0.76 | 0.28 |
XY | 0.90 | 0.36 | 0.16 |
Variable Series | Marginal Tests | Sequential Tests | |||||||
---|---|---|---|---|---|---|---|---|---|
Pseudo-F | p-Value | R | AICc | wAICc | Pseudo-F | p-Value | Cum. R | ||
Both islands | XY (q = 2) | 21.43 | 0.001 | 0.61 | 202.11 | 0.73 | 21.43 | 0.001 | 0.61 |
Water (q = 5) | 10.71 | 0.001 | 0.69 | 204.18 | 0.26 | / | / | / | |
Habitat (q = 3) | 9.03 | 0.001 | 0.51 | 211.89 | 0.01 | / | / | / | |
Santa Cruz | Water (q = 2) | 5.52 | 0.001 | 0.48 | 103.17 | 0.48 | 5.52 | 0.001 | 0.48 |
XY (q = 3) | 4.95 | 0.001 | 0.58 | 103.96 | 0.32 | / | / | / | |
Habitat (q = 1) | 4.91 | 0.001 | 0.27 | 104.97 | 0.20 | / | / | / | |
Floreana | Habitat (q = 2) | 4.00 | 0.001 | 0.40 | 94.46 | 0.66 | 4.00 | 0.001 | 0.40 |
XY (q = 1) | 1.74 | 0.144 | 0.12 | 97.06 | 0.18 | / | / | / | |
Water (q = 1) | 1.56 | 0.187 | 0.11 | 97.24 | 0.16 | / | / | / |
Variable | Marginal Tests | Sequential Tests | ||||||
---|---|---|---|---|---|---|---|---|
Pseudo-F | p-Value | R | AICc | Pseudo-F | p-Value | Cum. R | ||
Both islands | Y (latitude) | 32.81 | 0.001 | 0.54 | 204.89 | 32.81 | 0.001 | 0.54 |
Rock with sediment deposition | 9.08 | 0.001 | 0.24 | 201.96 | 5.33 | 0.001 | 0.62 | |
Temperature | 19.37 | 0.001 | 0.41 | 200.09 | 4.25 | 0.001 | 0.67 | |
Ammonium | 17.45 | 0.001 | 0.38 | 199.26 | 3.31 | 0.004 | 0.71 | |
Vegetated rock | 9.95 | 0.001 | 0.26 | 199.18 | 2.73 | 0.012 | 0.74 | |
Santa Cruz | Rock with sediment deposition | 4.91 | 0.001 | 0.27 | 104.97 | 4.91 | 0.002 | 0.27 |
Temperature | 4.00 | 0.003 | 0.24 | 102.66 | 5.30 | 0.002 | 0.50 | |
Floreana | Sand | 3.94 | 0.003 | 0.23 | 94.97 | 3.94 | 0.004 | 0.23 |
Bare rock | 3.31 | 0.011 | 0.20 | 94.47 | 3.34 | 0.023 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruneel, S.; Van Echelpoel, W.; Ho, L.; Raat, H.; Schoeters, A.; De Troyer, N.; Sor, R.; Ponton-Cevallos, J.; Vandeputte, R.; Van der heyden, C.; et al. Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago. J. Mar. Sci. Eng. 2021, 9, 375. https://doi.org/10.3390/jmse9040375
Bruneel S, Van Echelpoel W, Ho L, Raat H, Schoeters A, De Troyer N, Sor R, Ponton-Cevallos J, Vandeputte R, Van der heyden C, et al. Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago. Journal of Marine Science and Engineering. 2021; 9(4):375. https://doi.org/10.3390/jmse9040375
Chicago/Turabian StyleBruneel, Stijn, Wout Van Echelpoel, Long Ho, Heleen Raat, Amber Schoeters, Niels De Troyer, Ratha Sor, José Ponton-Cevallos, Ruth Vandeputte, Christine Van der heyden, and et al. 2021. "Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago" Journal of Marine Science and Engineering 9, no. 4: 375. https://doi.org/10.3390/jmse9040375
APA StyleBruneel, S., Van Echelpoel, W., Ho, L., Raat, H., Schoeters, A., De Troyer, N., Sor, R., Ponton-Cevallos, J., Vandeputte, R., Van der heyden, C., De Saeyer, N., Forio, M. A. E., Bermudez, R., Dominguez-Granda, L., Luca, S., Moens, T., & Goethals, P. (2021). Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago. Journal of Marine Science and Engineering, 9(4), 375. https://doi.org/10.3390/jmse9040375