Threat Posed by Future Sea-Level Rise to Freshwater Resources in the Upper Pearl River Estuary
Abstract
:1. Introduction
2. Description of Study Area
3. Methods
3.1. Numerical Model
3.2. Sea-Level Rise Scenarios
3.3. Flow Modulation
4. Results
4.1. Impact of Sea-Level Rise on the Upstream Brackish Water
4.2. Flow Modulation under the Constraint of Rising Sea Level
5. Discussion
5.1. Competitive Effect of River Flow and Sea-Level Rise
5.2. Combined Effect of Future Drought and Sea-Level Rise
5.3. Salinity Change Caused by Amplified Tidal Range
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; Monselesan, D.; Gregory, J.M.; Marzeion, B. Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett. 2013, 8, 014051. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Woodworth, P.; Gehrels, W.; Nerem, R. Nineteenth and twentieth century changes in sea level. Oceanography 2011, 24, 80–93. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA.
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; de Gusmao, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4oc world’ in the twenth-first century. Philos. Trans. R. Soc. Lond. 2011, 369, 161–181. [Google Scholar]
- Hai, T.X.; Nghi, V.V.; Hung, V.H.; Tuan, D.N.; Lam, D.T.; Van, C.T. Assessing and forecasting saline intrusion in the Vietnamese Mekong Delta Under the impact of upstream flow and sea level rise. J. Environ. Sci. Eng. B 2019, 8, 174–185. [Google Scholar]
- Hong, B.; Liu, Z.H.; Shen, J.; Wu, H.; Gong, W.P.; Xu, H.Z.; Wang, D.X. Potential physical impacts of sea-level rise on the Pearl River Estuary, China. J. Marine Syst. 2020, 201, 103245. [Google Scholar] [CrossRef]
- Hong, B.; Shen, J. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuar. Coast. Shelf Sci. 2012, 104-105, 33–45. [Google Scholar] [CrossRef]
- Mills, L.; Janeiro, J.; Neves, A.; Martins, F. The impact of sea level rise in the Guadiana Estuary. J. Comput. Sci. 2020, 44, 101169. [Google Scholar] [CrossRef]
- Poff, N.L.; Brinson, M.M.; Day, J.W., Jr. Aquatic Ecosystems and Global Climate Change: Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States; Pew Center on Global Climate Change: Washington, DC, USA, 2002; 45p, Available online: http://rydberg.biology.colostate.edu/wpoff/Public/poffpubs/Poff2002(PEW_AquaticEcosys).pdf (accessed on 25 February 2019).
- Rice, K.C.; Hong, B.; Shen, J. Assessment of salinity intrusion in the James and Chickahominy rivers as a result of simulated sea-level rise in Chesapeake Bay, East coast, United States. J. Environ. Manag. 2012, 111, 61–69. [Google Scholar] [CrossRef]
- Langevin, C.; Zygnerski, M. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Floda. Groundwater 2013, 51, 781–803. [Google Scholar] [CrossRef] [PubMed]
- Grabemann, H.; Grabemann, I.; Herbers, D.; Muller, A. Effects of a specific climate scenario on the hydrography and transport of conservative substances in the Weser estuary, Germany: A case study. Clim. Res. 2001, 18, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.; Dutta, D. Assessing impacts of sea level rise on river salinity in the Gorai River network, Bangladesh. Estuar. Coast. Shelf Sci. 2012, 96, 219–227. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C.; Hsu, M.H. Modeling assessment of a saltwater intrusion and a transport time scale response to sea-level rise in a tidal estuary. Environ. Fluid Mech. 2015, 15, 491–514. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W.; Johnson, E.; Lou, S.; Wan, W. Effects of sea level rise on salinity intrusion in St. Marks River Estuary, Florida, U.S.A. J. Coast. Res. 2014, 98, 89–96. [Google Scholar] [CrossRef]
- Najjar, R.G.; Pyke, C.R.; Adams, M.B.; Breitburg, D.; Hershner, C.; Kemp, M.; Howarth, R.; Mulholland, M.R.; Paolisso, M.; Secor, D.; et al. Potential climate-change impacts on the Chesapeake Bay. Estuar. Coast. Shelf Sci. 2010, 86, 1–20. [Google Scholar] [CrossRef]
- Hilton, T.W.; Najjar, R.G.; Zhong, L.; Li, M. Is there a signal of sea-level rise in Chesapeake Bay salinity? J. Geophys. Res. 2008, 113, C09002. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chen, K.; Kuang, C.P.; Zhu, D.Z.; He, L.L.; Mao, X.D.; Liang, H.D.; Song, H.L. Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Appl. Ocean. Res. 2016, 54, 12–25. [Google Scholar] [CrossRef]
- Gong, W.P.; Maa, P.Y.; Hong, B.; Shen, J. Salt transport during a dry season in the Modalmen Estuary, Pearl River Delta, China. Ocean. Coast. Manag. 2014, 100, 139–150. [Google Scholar] [CrossRef]
- Gong, W.P.; Lin, Z.Y.; Chen, Y.Z.; Chen, Z.Y.; Zhang, H. Effect of winds and waves on salt intrusion in the Pearl River estuary. Ocean. Sci. 2018, 14, 139–159. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.Y.; Zhu, Y.L.; Zhang, W.; Sun, S.W. Numerical simulation of salt flux in dry season in the Pearl River Delta. Trop. Geogr. 2012, 32, 216–222. [Google Scholar]
- Zhang, W.; Feng, H.; Zheng, J.; Hoitink, A.; Van Der Vegt, M.; Zhu, Y.; Cai, H. Numerical simulation and analysis of saltwater intrusion lengths in the Pearl River Delta, China. J. Coast. Res. 2013, 29, 372–382. [Google Scholar] [CrossRef]
- Zhao, H. The Evolution of the Pearl River Estuary; China Ocean Press: Beijing, China, 1990; pp. 1–357. [Google Scholar]
- Liu, Z.; Huang, G.; Gao, S. Physical model research on water dispatch in dry season in Pearl River mouth area. Pearl. River 2009, 27–28. [Google Scholar]
- Xiao, D.C.; Jia, H.F.; Wang, Z. Modeling Megacity Drinking Water Security under a DSS Framework in a Tidal River at the North Pearl River Delta, China. J. Am. Water Resour. Assoc. 2015, 51, 637–654. [Google Scholar] [CrossRef]
- Wang, Y. Summary of the emergency water diversion of the Pearl River in 2006. Pearl River 2006, 27, 6. [Google Scholar]
- He, J.J.; Liu, F.Q. Numerical simulation on salt water intrusion in Yangtze River Estuary by Three Gorges Reservoir Discharge in dry season. J. Green Sci. Technol. 2017, 000, 43–48. [Google Scholar]
- Mao, Q.; Shi, P.; Yin, K.; Gan, J.; Qi, Y. Tides and tidal currents in the Pearl River estuary. Cont. Shelf Res. 2004, 24, 1797–1808. [Google Scholar] [CrossRef]
- Brinkhoff, T. Major Agglomerations of the World. Available online: https://www.citypopulation.de/en/world/agglomerations/ (accessed on 13 October 2020).
- Hamrick, J.M.; Wu, T.S. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models. In Next Generation Environmental Models and Computational Methods; Delich, G., Wheeler, M.F., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997; pp. 143–161. [Google Scholar]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Haas, L. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuar. Coast. Shelf Sci. 2004, 61, 449–461. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; He, Q. A modeling study of the variation of the transport timescale and change of estuarine circulation due to human impact in the Changjiang Estuary, China. J. Mar. Syst. 2010, 82, 154–170. [Google Scholar] [CrossRef]
- Xia, M.; Xie, L.; Pietrafesa, L.J.; Whitney, M.M. The ideal response of a Gulf of Mexico estuary plume to wind forcing: Its connection with salt flux and a Lagrangian view. J. Geophys. Res. 2011, 116, C08035. [Google Scholar] [CrossRef]
- Hong, B.; Shen, J. Linking dynamics of transport timescale and variations of hypoxia in the Chesapeake. J. Geophys. Res. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.L. Decadal variation of hydrological status in stream network area and the eight outlets of Pearl River Delta. Acta Sci. Nat. Univ. Sunyatseni 2001, 40 (Suppl. S2), 29–31. (In Chinese) [Google Scholar]
- Wong, L.; Chen, J.; Xue, H.; Dong, L.; Su, J.; Heinke, G. A model study of the circulation in the Pearl River estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations. J. Geophys. Res. 2003, 108, 3156. [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M.; Cai, W.-J.; Wang, Y.; Wang, Z. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary. China. Mar. Chem. 2005, 93, 21–32. [Google Scholar] [CrossRef]
- Yin, X.L.; Zhang, H.W.; Fang, H.W. Hydrodynamic analysis and control on saline water intrusion in Modaomen waterway during the dry season. Chinese J. Hydrodyn. Ser. A 2008, 23, 554–559. [Google Scholar]
- Ralston, D.; Geyer, R.; Lerczak, J. Subtidal salinity and velocity in the Hudson River Estuary: Observations and Modeling. J. Phys. Oceanogr. 2008, 38, 753–770. [Google Scholar] [CrossRef]
- Zhi, X.; Jing, M.; Hao, W.; Yajie, H.; Guiyu, Y.; Wei, D. River discharge and saltwater intrusion level study of Yangtze River estuary, china. Water 2018, 10, 683. [Google Scholar]
- Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agr. Forest Meteorol. 2018, 249, 149–162. [Google Scholar] [CrossRef]
- Du, J.B.; Shen, J.; Zhang, Y.J.; Ye, F.; Liu, Z.; Wang, Z.G.; Wang, Y.P.; Yu, X.; Sisson, M.; Wang, H.V. Tidal response to sea-level rise in different types of estuaries: The importance of length, bathymetry, and geometry. Geophys. Res. Lett. 2018, 45, 227–235. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Hong, B. Threat Posed by Future Sea-Level Rise to Freshwater Resources in the Upper Pearl River Estuary. J. Mar. Sci. Eng. 2021, 9, 291. https://doi.org/10.3390/jmse9030291
Wang J, Hong B. Threat Posed by Future Sea-Level Rise to Freshwater Resources in the Upper Pearl River Estuary. Journal of Marine Science and Engineering. 2021; 9(3):291. https://doi.org/10.3390/jmse9030291
Chicago/Turabian StyleWang, Jiaxi, and Bo Hong. 2021. "Threat Posed by Future Sea-Level Rise to Freshwater Resources in the Upper Pearl River Estuary" Journal of Marine Science and Engineering 9, no. 3: 291. https://doi.org/10.3390/jmse9030291
APA StyleWang, J., & Hong, B. (2021). Threat Posed by Future Sea-Level Rise to Freshwater Resources in the Upper Pearl River Estuary. Journal of Marine Science and Engineering, 9(3), 291. https://doi.org/10.3390/jmse9030291