Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Field Data Collection
2.3. LISST-100X—Volumetric Concentrations and Particle Size Data
2.4. Data Processing and Analysis of LISST Data
3. Results and Discussion
3.1. Volumetric Concentration
3.2. Particle Size Distribution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Zone | Site | Survey Depth | Contribution (%) | Neap | Transitional | Spring | |||||||||||||||
Particle Size Class (µm) | |||||||||||||||||||||
2.5–7 | 7–35 | 35–75 | 75–130 | 130–300 | 300–500 | 2.5–7 | 7–35 | 35–75 | 75–130 | 130–300 | 300–500 | 2.5–7 | 7–35 | 35–75 | 75–130 | 130–300 | 300–500 | ||||
Lower-estuary | 1 | Surf | M ± SD | 5±2 | 16 ± 9 | 13 ± 9 | 9 ± 7 | 17 ± 7 | 40 ± 29 | 4 ± 2 | 24 ± 9 | 27 ± 9 | 16 ± 5 | 17 ± 9 | 21 ± 15 | 5 ± 2 | 25 ± 8 | 28 ± 8 | 15 ± 4 | 17 ± 8 | 10 ± 11 |
P95 | 10 | 33 | 27 | 19 | 27 | 82 | 6 | 41 | 38 | 23 | 30 | 45 | 8 | 35 | 37 | 20 | 30 | 35 | |||
Max | 12 | 39 | 29 | 31 | 36 | 89 | 8 | 43 | 38 | 25 | 42 | 60 | 11 | 40 | 39 | 21 | 45 | 53 | |||
Mid | M ± SD | 6 ± 2 | 21 ± 6 | 19 ± 5 | 16 ± 5 | 21 ± 5 | 17 ± 17 | 4 ± 1 | 24 ± 7 | 30 ± 6 | 19 ± 3 | 18 ± 8 | 5 ± 6 | 4 ± 1 | 22 ± 5 | 29 ± 5 | 19 ± 2 | 20 ± 6 | 6 ± 5 | ||
P95 | 9 | 30 | 26 | 21 | 30 | 57 | 5 | 34 | 38 | 24 | 32 | 17 | 5 | 32 | 36 | 23 | 30 | 15 | |||
Max | 10 | 33 | 27 | 23 | 35 | 72 | 6 | 36 | 39 | 26 | 35 | 45 | 5 | 34 | 38 | 24 | 34 | 24 | |||
Bott | M ± SD | 6 ± 1 | 24 ± 4 | 23 ± 3 | 19 ± 2 | 21 ± 5 | 7 ± 6 | 3 ± 1 | 22 ± 7 | 29 ± 6 | 20 ± 3 | 20 ± 8 | 6±7 | 3±1 | 19 ± 5 | 27 ± 5 | 19 ± 2 | 24 ± 7 | 8 ± 5 | ||
P95 | 8 | 30 | 28 | 22 | 29 | 19 | 5 | 32 | 36 | 24 | 30 | 15 | 5 | 29 | 33 | 22 | 35 | 19 | |||
Max | 10 | 32 | 30 | 24 | 32 | 28 | 6 | 37 | 38 | 26 | 31 | 48 | 6 | 34 | 35 | 25 | 38 | 25 | |||
Mid-estuary | 3 | Surf | M ± SD | 8 ± 5 | 23 ± 9 | 11 ± 7 | 10 ± 5 | 14 ± 7 | 33 ± 21 | 5 ± 2 | 26 ± 7 | 28 ± 7 | 17 ± 4 | 18 ± 8 | 6 ± 7 | 7 ± 2 | 30 ± 7 | 28 ± 6 | 15 ± 5 | 13 ± 6 | 8 ± 10 |
P95 | 16 | 41 | 23 | 18 | 28 | 68 | 7 | 35 | 35 | 23 | 32 | 20 | 11 | 41 | 35 | 21 | 21 | 35 | |||
Max | 26 | 56 | 25 | 28 | 39 | 73 | 15 | 36 | 36 | 26 | 56 | 38 | 15 | 43 | 36 | 23 | 49 | 49 | |||
Mid | M ± SD | 9 ± 3 | 30 ± 7 | 17 ± 6 | 16 ± 4 | 15 ± 6 | 11 ± 11 | 4 ± 1 | 21 ± 5 | 26 ± 6 | 20 ± 3 | 23 ± 6 | 6 ± 5 | 5 ± 2 | 22 ± 6 | 27 ± 5 | 19 ± 2 | 21 ± 7 | 6 ± 4 | ||
P95 | 15 | 42 | 25 | 25 | 24 | 35 | 6 | 30 | 34 | 24 | 33 | 15 | 7 | 33 | 35 | 22 | 30 | 13 | |||
Max | 19 | 51 | 26 | 27 | 30 | 70 | 7 | 32 | 35 | 27 | 35 | 28 | 10 | 37 | 37 | 23 | 36 | 23 | |||
Bott | M ± SD | 8 ± 2 | 28 ± 5 | 20 ± 5 | 18 ± 3 | 18 ± 5 | 8 ± 7 | 3 ± 1 | 17 ± 5 | 24 ± 6 | 19 ± 3 | 26 ± 8 | 9 ± 6 | 4 ± 2 | 19 ± 6 | 25 ± 5 | 19 ± 2 | 25 ± 7 | 9 ± 5 | ||
P95 | 11 | 37 | 26 | 23 | 25 | 24 | 6 | 28 | 34 | 24 | 37 | 22 | 7 | 32 | 32 | 22 | 34 | 18 | |||
Max | 13 | 24 | 29 | 26 | 29 | 33 | 8 | 30 | 35 | 24 | 39 | 28 | 8 | 35 | 33 | 24 | 37 | 22 | |||
4 | Surf | M ± SD | 5 ± 5 | 14 ± 8 | 7 ± 6 | 4 ± 5 | 14 ± 9 | 55 ± 24 | 6 ± 4 | 27 ± 9 | 24 ± 7 | 15 ± 5 | 17 ± 9 | 11 ± 6 | 7 ± 3 | 30 ± 9 | 27 ± 9 | 16 ± 8 | 13 ± 9 | 10 ± 15 | |
P95 | 16 | 40 | 18 | 12 | 31 | 85 | 14 | 45 | 34 | 23 | 28 | 39 | 13 | 41 | 36 | 35 | 29 | 36 | |||
Max | 20 | 47 | 30 | 26 | 44 | 87 | 15 | 52 | 35 | 25 | 54 | 59 | 17 | 45 | 37 | 36 | 31 | 84 | |||
Mid | M ± SD | 9 ± 4 | 25 ± 9 | 14 ± 6 | 7±3 | 12±7 | 33±21 | 5±3 | 24±8 | 26±7 | 19±4 | 19±9 | 6±5 | 5±3 | 24 ± 8 | 25 ± 9 | 17 ± 9 | 17 ± 9 | 12 ± 10 | ||
P95 | 16 | 42 | 23 | 13 | 26 | 69 | 13 | 40 | 35 | 23 | 37 | 18 | 10 | 36 | 37 | 35 | 33 | 43 | |||
Max | 17 | 44 | 27 | 16 | 36 | 79 | 14 | 42 | 36 | 24 | 39 | 22 | 13 | 37 | 38 | 36 | 34 | 76 | |||
Bott | M ± SD | 9 ± 4 | 28 ± 8 | 17 ± 5 | 11 ± 4 | 15 ± 7 | 18 ± 16 | 4 ± 2 | 21 ± 6 | 25 ± 6 | 20 ± 4 | 22 ± 7 | 6 ± 5 | 5 ± 3 | 21 ± 7 | 23 ± 7 | 18 ± 5 | 23 ± 8 | 11 ± 8 | ||
P95 | 16 | 44 | 25 | 17 | 27 | 48 | 9 | 33 | 35 | 25 | 33 | 15 | 12 | 34 | 35 | 29 | 34 | 27 | |||
Max | 20 | 48 | 26 | 20 | 37 | 59 | 11 | 37 | 36 | 26 | 37 | 22 | 14 | 39 | 37 | 32 | 36 | 29 | |||
9 | Surf | M ± SD | 6 ± 4 | 22 ± 9 | 17 ± 8 | 12 ± 6 | 17 ± 10 | 25 ± 22 | 5 ± 2 | 27 ± 7 | 29 ± 9 | 16 ± 4 | 15 ± 7 | 8 ± 10 | 6 ± 3 | 24 ± 9 | 24 ± 6 | 14 ± 4 | 17 ± 7 | 15 ± 14 | |
P95 | 11 | 38 | 28 | 20 | 34 | 66 | 10 | 38 | 38 | 24 | 30 | 32 | 13 | 39 | 35 | 19 | 30 | 44 | |||
Max | 15 | 71 | 31 | 23 | 85 | 82 | 13 | 43 | 40 | 25 | 44 | 59 | 16 | 41 | 36 | 22 | 35 | 75 | |||
Mid | M ± SD | 7 ± 3 | 25 ± 7 | 22 ± 5 | 17 ± 4 | 19 ± 8 | 10 ± 9 | 4 ± 1 | 22 ± 6 | 28 ± 8 | 20 ± 4 | 20 ± 8 | 6 ± 7 | 5 ± 2 | 22 ± 8 | 25 ± 6 | 17 ± 2 | 22 ± 8 | 10 ± 7 | ||
P95 | 12 | 38 | 29 | 22 | 31 | 30 | 7 | 34 | 37 | 26 | 32 | 23 | 8 | 34 | 35 | 21 | 33 | 21 | |||
Max | 17 | 48 | 31 | 23 | 34 | 48 | 8 | 39 | 39 | 27 | 39 | 28 | 11 | 39 | 36 | 22 | 36 | 27 | |||
Bott | M ± SD | 7 ± 3 | 26 ± 7 | 24 ± 4 | 19 ± 3 | 18 ± 8 | 5 ± 4 | 3 ± 1 | 19 ± 5 | 26 ± 8 | 20 ± 4 | 23 ± 8 | 8 ± 8 | 4 ± 1 | 20 ± 6 | 25 ± 6 | 18 ± 2 | 24 ± 8 | 10 ± 7 | ||
P95 | 12 | 37 | 30 | 23 | 32 | 12 | 5 | 29 | 37 | 25 | 36 | 26 | 6 | 30 | 33 | 21 | 36 | 25 | |||
Max | 16 | 45 | 32 | 25 | 46 | 29 | 7 | 32 | 39 | 25 | 39 | 37 | 7 | 32 | 35 | 22 | 38 | 27 | |||
Upper-estuary | 5 | Surf | M ± SD | 9 ± 6 | 24 ± 9 | 10 ± 6 | 7 ± 5 | 13 ± 9 | 36 ± 25 | 7 ± 3 | 27 ± 9 | 23 ± 8 | 15 ± 4 | 17 ± 7 | 11 ± 13 | 8 ± 5 | 26 ± 8 | 24 ± 9 | 14 ± 6 | 15 ± 8 | 13 ± 17 |
P95 | 21 | 48 | 20 | 14 | 33 | 75 | 13 | 42 | 33 | 21 | 32 | 42 | 20 | 44 | 37 | 22 | 20 | 53 | |||
Max | 27 | 53 | 24 | 31 | 37 | 90 | 16 | 50 | 36 | 23 | 39 | 60 | 23 | 48 | 38 | 23 | 34 | 60 | |||
Mid | M ± SD | 8 ± 4 | 31 ± 9 | 18 ± 4 | 12 ± 4 | 14 ± 7 | 13 ± 14 | 6 ± 3 | 25 ± 6 | 24 ± 6 | 19 ± 4 | 20 ± 7 | 6 ± 5 | 6 ± 4 | 21 ± 8 | 22 ± 8 | 17 ± 5 | 22 ± 9 | 12 ± 10 | ||
P95 | 19 | 46 | 24 | 17 | 27 | 39 | 11 | 38 | 33 | 24 | 34 | 16 | 16 | 36 | 36 | 23 | 35 | 32 | |||
Max | 23 | 53 | 26 | 19 | 35 | 69 | 13 | 41 | 35 | 26 | 39 | 23 | 21 | 46 | 38 | 24 | 37 | 52 | |||
Bott | M ± SD | 9 ± 3 | 33 ± 7 | 21 ± 4 | 15 ± 3 | 15 ± 8 | 5 ± 6 | 5 ± 2 | 23 ± 5 | 24 ± 6 | 20 ± 5 | 22 ± 6 | 6 ± 5 | 5 ± 4 | 20 ± 8 | 22 ± 6 | 17 ± 4 | 24 ± 9 | 11 ± 7 | ||
P95 | 17 | 46 | 26 | 19 | 29 | 15 | 9 | 34 | 34 | 26 | 31 | 16 | 15 | 39 | 32 | 22 | 35 | 22 | |||
Max | 19 | 52 | 29 | 23 | 40 | 31 | 11 | 37 | 36 | 27 | 35 | 36 | 17 | 42 | 34 | 24 | 37 | 38 | |||
7 | Surf | M ± SD | 9 ± 5 | 21 ± 9 | 10 ± 5 | 6 ± 4 | 13 ± 7 | 41 ± 6 | 7 ± 5 | 21 ± 8 | 20 ± 6 | 16 ± 6 | 21 ± 9 | 11 ± 13 | 9 ± 4 | 28 ± 9 | 23 ± 5 | 15 ± 4 | 17 ± 7 | 8 ± 6 | |
P95 | 17 | 38 | 18 | 13 | 24 | 80 | 18 | 51 | 31 | 25 | 33 | 43 | 17 | 45 | 32 | 21 | 30 | 22 | |||
Max | 18 | 42 | 23 | 27 | 40 | 90 | 20 | 57 | 34 | 27 | 48 | 51 | 19 | 49 | 35 | 23 | 34 | 30 | |||
Mid | M ± SD | 9 ± 4 | 33 ± 9 | 16 ± 4 | 10 ± 3 | 12 ± 7 | 16 ± 14 | 6 ± 4 | 23 ± | 21 ± 3 | 18 ± 5 | 24 ± 9 | 8 ± 5 | 6 ± 3 | 22 ± 8 | 20 ± 4 | 15 ± 4 | 24 ± 7 | 13 ± 8 | ||
P95 | 19 | 46 | 22 | 14 | 25 | 42 | 14 | 43 | 25 | 24 | 36 | 17 | 13 | 37 | 26 | 20 | 34 | 29 | |||
Max | 20 | 50 | 25 | 17 | 31 | 58 | 14 | 46 | 29 | 26 | 38 | 21 | 17 | 43 | 28 | 23 | 36 | 37 | |||
Bott | M ± SD | 9 ± 3 | 35 ± 8 | 19 ± 4 | 12 ± 3 | 12 ± 7 | 9 ± 12 | 5 ± 3 | 21 ± 9 | 20 ± 3 | 18 ± 4 | 27 ± 8 | 9 ± 5 | 6 ± 2 | 21 ± 7 | 21 ± 4 | 16 ± 3 | 25 ± 7 | 11 ± 7 | ||
P95 | 18 | 46 | 24 | 17 | 22 | 35 | 13 | 42 | 24 | 23 | 37 | 18 | 11 | 35 | 27 | 20 | 36 | 27 | |||
Max | 20 | 50 | 27 | 21 | 42 | 72 | 14 | 45 | 26 | 25 | 42 | 32 | 13 | 41 | 29 | 21 | 39 | 32 |
References
- Schoellhamer, D.H. Sediment resuspension mechanisms in Old Tampa Bay, Florida. Estuar. Coast. Shelf Sci. 1995, 40, 603–620. [Google Scholar] [CrossRef]
- Manning, A.J.; Langston, W.J.; Jonas, P.J.C. A review of sediment dynamics in the Severn Estuary: Influence of flocculation. Mar. Pollut. Bull. 2010, 61, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Fettweis, M.; Sas, M.; Monbaliu, J. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuar. Coast. Shelf Sci. 1998, 47, 21–36. [Google Scholar] [CrossRef]
- Wang, Y.P.; Voulgaris, G.; Li, Y.; Yang, Y.; Gao, J.; Chen, J.; Gao, S. Sediment resuspension, flocculation, and settling in a macrotidal estuary. J. Geophys. Res. Oceans. 2013, 118, 5591–5608. [Google Scholar] [CrossRef]
- Braithwaite, K.M.; Bowers, D.G.; Nimmo Smith, W.A.M.; Graham, G.W.; Agrawal, Y.C.; Mikkelsen, O.A. Observations of particle density and scattering in the Tamar Estuary. Mar. Geol. 2010, 277, 1–10. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries. Estuar. Coast. Shelf Sci. 2017, 198, 529–541. [Google Scholar] [CrossRef]
- Schmitt, F.G.; Dur, G.; Souissi, S.; Brizard-Zongo, S. Statistical properties of turbidity, oxygen and pH fluctuations in the Seine river estuary (France). Phys. A Stat. Mech. its Appl. 2008, 387, 6613–6623. [Google Scholar] [CrossRef]
- Ali, A.; Lemckert, C.J.; Zhang, H.; Dunn, R.J.K. Sediment dynamics of a very shallow subtropical estuarine lake. J. Coast. Res. 2014, 30, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.-J.; Ye, X.; Du, Y.-F.; Yin, X.-J. Hydrodynamic and biological mechanisms for variations in near-bed suspended sediment concentrations in a Spartina alterniflora Marsh—a case study of Luoyuan Bay, China. Estuaries Coast. 2017, 40, 1540–1550. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Xu, Y. Observations of distribution and flocculation of suspended particulate matter in the Minjiang River Estuary, China. Mar. Geol. 2017, 387, 31–44. [Google Scholar] [CrossRef]
- Berlamont, J.; Ockenden, M.; Toorman, E.; Winterwerp, J. The characterisation of cohesive sediment properties. Coast. Eng. 1993, 21, 105–128. [Google Scholar] [CrossRef] [Green Version]
- Fugate, D.C.; Friederichs, C.T. Controls on suspended aggregate size in partially mixed estuaries. Estuar. Coast. Shelf Sci. 2003, 58, 389–404. [Google Scholar] [CrossRef]
- Winterwerp, J.C. On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res. 2002, 22, 1339–1360. [Google Scholar] [CrossRef]
- Regnier, P.; Wollast, R. Distribution of trace metals in suspended matter of the Scheldt estuary. Mar. Chem. 1993, 43, 3–19. [Google Scholar] [CrossRef]
- Christiansen, C.; Gertz, F.; Laima, M.J.C.; Lund-Hansen, L.C.; Vang, T.; Jürgensen, C. Nutrient (P, N) dynamics in the southwestern Kattegat, Scandinavia: Sedimentation and resuspension effects. Environ. Geol. 1997, 29, 66–77. [Google Scholar] [CrossRef]
- Cloern, J.E.; Nichols, F.H. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. Hyrdobiologia 1985, 129, 229–237. [Google Scholar] [CrossRef]
- Tengberg, A.; Almroth, E.; Hall, P. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: In situ measurements using new experimental technology. J. Exp. Mar. Biol. Ecol. 2003, 285–286, 119–142. [Google Scholar] [CrossRef]
- Dunn, R.J.K.; Waltham, N.J.; Teasdale, P.R.; Robertson, D.; Welsh, D.T. Short-term nitrogen and phosphorus release during the disturbance of surface sediments: A case study in an urbanised estuarine system (Gold Coast Broadwater, Australia). J. Mar. Sci. Eng. 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Lawson, S.E.; Wiberg, P.L.; McGlathery, K.J.; Fugate, D.C. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries Coast. 2007, 30, 102–112. [Google Scholar] [CrossRef]
- Olesen, B. Regulation of light attenuation and eelgrass Zostera marina depth distribution in a Danish embayment. Mar. Ecol. Prog. Ser. 1996, 134, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-C.; Hsu, M.-H.; Kuo, A.Y. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Mar. Pollut. Bull. 2002, 44, 1076–1088. [Google Scholar] [CrossRef]
- Thomsen, L.; Jahmlich, S.; Graf, G.; Friedrichs, M.; Wanner, S.; Springer, B. An instrument for aggregate studies in the benthic boundary layer. Mar. Geol. 1996, 135, 153–157. [Google Scholar] [CrossRef]
- Hunt, S.; Lemckert, C. Suspended sediment distribution within a partially mixed subtropical estuary. J. Coast. Res. 2000, 34, 382–387. [Google Scholar]
- Gibbs, R.J.; Konwar, L.N. Effects of pippetting on mineral flocs. Environ. Sci. Technol. 1982, 16, 119. [Google Scholar] [CrossRef]
- Gibbs, R.J.; Konwar, L.N. Sampling of mineral flocs using Niskin Bottles. Environ. Sci. Technol. 1983, 17, 374–375. [Google Scholar] [CrossRef]
- Thorne, P.D.; Hardcastle, P.J.; Soulsby, R.L. Analysis of acoustic measurements of suspended sediments. J. Geophys. Res. Oceans. 1993, 98, 899–910. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Traykovski, P.; Latter, R.J.; Irish, J.D. A laboratory evaluation of the laser in situ scattering and transmissometry instrument using natural sediments. Mar. Geol. 1999, 159, 355–367. [Google Scholar] [CrossRef]
- Thomas, L.P.; Marino, B.M.; Szupiany, R.N.; Gallo, M.N. Characterisation of the suspended particulate matter in a stratified estuarine environment employing complementary techniques. Cont. Shelf Res. 2017, 148, 37–43. [Google Scholar] [CrossRef]
- Walker, M.H. Fisheries Resources of the Port Curtis and Capricorn Regions; Queensland Fisheries Management Authority: Brisbane, Australia, 1997. [Google Scholar]
- Jones, M.-A.; Stauber, J.; Apte, S.; Simpson, S.; Vicente-Beckett, V.; Johnson, R.; Duivenvoorden, L. A risk assessment approach to contaminants in Port Curtis, Queensland, Australia. Mar. Pollut. Bull. 2005, 51, 448–458. [Google Scholar] [CrossRef]
- Pillans, R.D.; Fry, G.C.; Haywood, M.D.; Rochester, W.; Limpus, C.J.; Patterson, T.; Babcock, R.C. Residency, home range and tidal habitat use of Green Turtles (Chelonia mydas) in Port Curtis, Australia. Mar. Biol. 2021, 168, 1–18. [Google Scholar] [CrossRef]
- Connolly, R.M.; Currie, D.R.; Danaher, K.F.; Dunning, M.; Melzer, A.; Platten, J.R.; Shearer, D.; Stratford, P.J.; Teasdale, P.R.; Vadergradt, M. Intertidal Wetlands of Port Curtis: Ecological Patterns and Processes and Their Implications; Research Centre for Coastal Zone, Estuary and Waterway Management: Brisbane, Australia, 2006. [Google Scholar]
- Dunn, R.J.K.; Zigic, S.; Burling, M.; Lin, H.-H. Hydrodynamic and sediment modelling within a macro tidal estuary: Port Curtis estuary, Australia. J. Mar. Sci. Eng. 2015, 3, 720–744. [Google Scholar] [CrossRef] [Green Version]
- Currie, D.R.; Small, K.J. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar. Coast. Shelf Sci. 2005, 63, 315–331. [Google Scholar] [CrossRef]
- Doblin, M.A.; Murphey, K.R.; Rioz, G.M. Thresholds for tracing ships’ ballast water: An Australian case study. Mar. Ecol. Prog. Ser. 2010, 408, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Angel, B.M.; Jarolimek, C.V.; King, J.J.; Hales, L.T.; Simpson, S.L.; Jung, R.F.; Apte, S.C. Metal Concentrations in the Waters and Sediments of Port Curtis, Queensland; CSIRO: Melbourne, Australia, 2012. [Google Scholar]
- Vision Environment; Asia-Pacific ASA. BDDP Water Quality: September and October 2011; Technical Report; Gladstone port Corporation: Gladstone, Australia, November 2011. [Google Scholar]
- Herzfeld, M.; Parslow, J.; Andrewartha, J.; Sakov, P.; Webster, I.T. Hydrodynamic Modelling of the Port Curtis Region; Technical Report 7; CRC for Coastal Zone, Estuary and Waterway Management: Queensland, Australia, April 2004. [Google Scholar]
- Jackson, E.L.; English, N.B.; Irving, A.D.; Symonds, A.M.; Dwane, G.; Nevin, O.T.; Maher, D.T. A multifaceted approach for determining sediment provenance to coastal shipping channels. J. Mar. Sci. Eng. 2019, 7, 434. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, Y.C.; Pottsmith, H.C. Laser diffraction particle sizing in STRESS. Cont. Shelf Res. 1994, 14, 1101–1121. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Whitmire, A.; Mikkelsen, O.A.; Pottsmith, H.C. Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction. J. Geophys. Res. 2008, 113, C04023. [Google Scholar] [CrossRef] [Green Version]
- Fugate, D.C.; Friedrichs, C.T. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont. Shelf Res. 2002, 22, 1867–1886. [Google Scholar] [CrossRef]
- Mikkelsen, O.A.; Pejrup, M. The use of a LISST-100 laser particle sizer for the in-situ estimates of floc size, density and settling velocity. Geo-Mar. Lett. 2001, 20, 187–195. [Google Scholar] [CrossRef]
- Fettweis, M.; Francken, F.; Pison, V.; Van den Eynde, D. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Mar. Geol. 2006, 235, 63–74. [Google Scholar] [CrossRef]
- Fall, K.A.; Friedrichs, C.T.; Massey, G.M.; Bowers, D.G.; Jarrell Smith, S. The importance of organic content to fractal floc properties in estuarine surface waters: Insights from video, LISST, and pump sampling. J. Geophys. Res. Oceans. 2020, 126, e2020JC016787. [Google Scholar] [CrossRef]
- Vision Environment. Western Basin Dredging and Disposal Project: Water Quality Monitoring; Technical Report; Vision Environment: Gladstone, Australia, February 2012. [Google Scholar]
- Wolanski, E.; Gibbs, R.J. Flocculation of suspended sediment in the Fly River estuary, Papua New Guinea. J. Coast. Res. 1995, 11, 754–762. [Google Scholar]
- Giardino, A.; Ibrahim, E.; Adam, S.; Toorman, E.A.; Monbaliu, J. Hydrodynamics and cohesive sediment transport in the IJzer estuary, Belgium: Case Study. J. Waterw. Port Coast. Ocean Eng. 2009, 135, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, R.; Souza, A. Measuring hydrodynamics and sediment transport processes in the Dee Estuary. Earth Syst. Sci. Data. 2010, 2, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Bartholomä, A.; Kubicki, A.; Badewien, T.H.; Flemming, B.W. Suspended sediment transport in the German Wadden Sea—seasonal variations and extreme events. Ocean Dyn. 2009, 59, 213–225. [Google Scholar] [CrossRef]
15–16 September | 21–22 September | 5–6 October | |
---|---|---|---|
Sample sites | 6 | 6 | 6 |
LISST profiles per site | 6 | 6 | 7 |
Total LISST profiles (n) | 36 | 36 | 42 |
Tidal phase 1 | Neap | Transitional | Spring |
Tidal ranges 1 (m) | 1.12–2.02 | 2.84–3.00 | 3.19–3.69 |
Maximum wind Speed and direction(09:00 and 15:00) (km/h) 2 | 8 and 9 (WSW) | 21 and 30 (ESE) | 14 and 13 (ENE) |
Recorded rainfall 3 (mm) | 0 | 40.8 | 0 |
Days since last rainfall and amount 3 (mm) | 3 (1 mm) | >5 (0 mm) | 4 (22.4 mm) |
Survey depth | Lower-estuary site | |||
M ± SD | Md | P95 | Max | |
Surface | 25.7 ± 49.0 | 18.0 | 62.1 | 765.8 |
Mid | 19.8 ± 10.2 | 19.3 | 38.9 | 50.3 |
Bottom | 21.3 ± 13.7 | 19.2 | 46.6 | 67.0 |
Depth-averaged | 22.2 ± 29.7 | 18.8 | 46.0 | 765.8 |
Mid-estuary sites | ||||
M ± SD | Md | P95 | Max | |
Surface | 22.1 ± 47.3 | 14.7 | 47.3 | 738.4 |
Mid | 22.6 ± 22.0 | 17.7 | 62.1 | 144.6 |
Bottom | 28.4 ± 26.6 | 24.0 | 79.9 | 155.3 |
Depth-averaged | 24.5 ± 33.8 | 17.3 | 70.3 | 738.4 |
Upper-estuary sites | ||||
M ± SD | Md | P95 | Max | |
Surface | 16.0 ± 37.9 | 9.8 | 31.8 | 595.7 |
Mid | 15.5 ± 14.1 | 9.8 | 42.0 | 71.1 |
Bottom | 23.0 ± 35.9 | 12.6 | 83.4 | 272.2 |
Depth-averaged | 18.3 ± 31.5 | 11.0 | 53.0 | 595.7 |
Survey depth | Neap tide conditions | |||
M ± SD | Md | P95 | Max | |
Surface | 12.9 ± 29.9 | 6.0 | 42.2 | 420.9 |
Mid | 6.2 ± 4.4 | 5.1 | 14.9 | 35.3 |
Bottom | 6.0 ± 3.3 | 5.3 | 11.4 | 22.3 |
Depth-averaged | 8.3 ± 17.6 | 5.5 | 19.0 | 420.9 |
Transitional tide conditions | ||||
M ± SD | Md | P95 | Max | |
Surface | 24.7 ± 60.2 | 17.2 | 39.5 | 738.4 |
Mid | 19.8 ± 9.7 | 19.8 | 35.9 | 60.0 |
Bottom | 23.1 ± 11.8 | 21.6 | 41.0 | 78.0 |
Depth-averaged | 22.6 ± 35.5 | 19.2 | 39.1 | 738.4 |
Spring tide conditions | ||||
M ± SD | Md | P95 | Max | |
Surface | 23.3 ± 36.1 | 19.2 | 49.3 | 765.8 |
Mid | 31.8 ± 22.5 | 26.8 | 69.1 | 144.6 |
Bottom | 45.6 ± 39.9 | 31.7 | 119.4 | 272.2 |
Depth-averaged | 33.9 ± 35.1 | 25.8 | 87.8 | 765.8 |
Zone | Site | 300–500 µm Class | ||
Neap (% Contribution to PSD) | Transitional (∆% vs. Neap) | Spring (∆% vs. Neap) | ||
Lower-estuary | 1 | 40 | −48 | −75 |
Mid-estuary | 3 | 33 | −82 | −76 |
4 | 55 | −80 | −82 | |
9 | 25 | −68 | −40 | |
Upper-estuary | 5 | 36 | −69 | −64 |
7 | 41 | −73 | −80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunn, R.J.K.; Glen, J.; Lin, H.-H.; Zigic, S. Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia). J. Mar. Sci. Eng. 2021, 9, 1385. https://doi.org/10.3390/jmse9121385
Dunn RJK, Glen J, Lin H-H, Zigic S. Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia). Journal of Marine Science and Engineering. 2021; 9(12):1385. https://doi.org/10.3390/jmse9121385
Chicago/Turabian StyleDunn, Ryan J. K., Jordan Glen, Hsin-Hui Lin, and Sasha Zigic. 2021. "Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia)" Journal of Marine Science and Engineering 9, no. 12: 1385. https://doi.org/10.3390/jmse9121385
APA StyleDunn, R. J. K., Glen, J., Lin, H.-H., & Zigic, S. (2021). Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia). Journal of Marine Science and Engineering, 9(12), 1385. https://doi.org/10.3390/jmse9121385