The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Reef Model
2.2. Experimental Setup
2.3. Boundary Conditions
3. Results
3.1. Laws of the Velocity Ditribution in Artificial Reef Areas
3.1.1. Experimental Settings for Analysis
3.1.2. Longitudinal Velocity Distribution
- A and B are the sections not entering the reef area (Type I);
- D, E, F, L, O, and P are the rear sections of the reef groups (Type II);
- C, J, K, and N are the sections between the two reef monocases (Type III);
- G, H, I, and M are the front sections of the reef groups (Type IV).
- Type I
- (2)
- Type II & III
- (3)
- Type IV
3.1.3. Vertical Velocity Distribution
- A, B, G, H, I and M are the front sections of the reef groups. (Type I & IV);
- D, E, F, L, O and P are the rear sections of the reef groups (Type II);
- C, J, K and N are the sections between the two reef monocases (Type III);
3.2. Characteristics of Upwelling Flow and Back Vortex Flow Field
3.2.1. The Upwelling Flow Field
3.2.2. The Back Vortex Flow Field
3.3. Evaluation of Each Configuration Tested Based on Impacts of the Hydrodynamics
3.3.1. Entropy Method
- (1)
- Raw data standardization:
- (2)
- Calculation of the characteristic proportion or contribution (pij) of the i-th evaluation object under the j-th index:
- (3)
- Calculation of the entropy value (ej) of index j:
- (4)
- Calculation of the difference coefficient (gj) of index j:
- (5)
- Normalization of the difference coefficient and calculation of the weight of index j (Wj):
- (6)
- Calculation of the comprehensive score (Yi) of each index of the i-th evaluation object:
3.3.2. Weight Optimization
3.3.3. Analysis of Evaluation Results
3.3.4. Analysis on the Application of the Adjusted Layout Scheme
4. Conclusions
- (1)
- According to the longitudinal velocity distribution of all sections, it was found that the longitudinal velocity distribution of the sections in front of the reef groups (Type I & IV) conforms to logarithmic distributions which can be fitted with Equations (1) and (3) respectively. While the longitudinal velocity distribution of sections between the two reef monocases and behind the reef groups (Type II & III) is a combination of exponential and logarithmic distributions which fitted with Equations (2) and (3), and there is a little difference between the dividing point height of Type II and III.
- (2)
- By comparing the flow field under different hydraulic conditions and configurations, the experimental results show that, in general, the eigenvalues of both upwelling and back vortex increase with the increase of the velocity when the spacing is kept uniform. For similar velocity, the maximum values of both upwelling and back vortex are obtained when the distance between unit reefs is 1.25 L.
- (3)
- Based on the hydrodynamic characteristics and the economic cost, the entropy method was used to evaluate the flow field effect induced by M-shaped reef under four spacing setups. The comprehensive score obtained from large to small was Y (1.25 L) > Y (1.50 L) > Y (0.75 L) > Y (1.00 L). The ecological benefits and the economic cost were considered, and it is suggested that the original design spacing should be increased by 25% when the square ecological unit reef is put into practice. This suggestion can be considered as a reference for the construction of M-Type artificial reef in coastal areas.
- (4)
- Through comparative analysis, it is suggested that the M-type reef groups should be further changed into four individual reefs. In fact, after this adjustment was made, the cost of the unit reef was reduced by 10%, while the influence range on the flow field increased by 10%. Therefore, greater ecological benefits could be obtained with less economic input.
Author Contributions
Funding
Conflicts of Interest
References
- Laxe, F.G.; Bermúdez, F.M.; Palmero, F.M.; Novo-Corti, I. Governance of the fishery industry: A new global context. Ocean Coast. Manag. 2018, 153, 33–45. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.A.; Fulton, E.A.; Johnson, C.R.; Haward, M. How to Sustain Fisheries: Expert Knowledge from 34 Nations. Water 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.A.; Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 2018, 93, 171–177. [Google Scholar] [CrossRef]
- Svane, I.; Petersen, J.K. On the problems of epibioses, fouling and artificial reefs, a review. Mar. Ecol. Pubbl. Stn. Zool. Napoli 2001, 22, 169–188. [Google Scholar] [CrossRef]
- Lima, J.S.; Zalmon, I.R.; Love, M. Overview and trends of ecological and socioeconomic research on artificial reefs. Mar. Environ. Res. 2019, 145, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Otake, S. Design and Creation of Fishing Grounds in Japan with Artificial Reefs. In Modern Fisheries Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429328039. [Google Scholar]
- Manajit, N.; Yasook, N.; Putsa, S.; Tiaye, R.; Amornpiyakrit, T.; Chanrachkij, I.; Sulit, V.T. Benchmarking the adoption of fish enhancing devices in Southeast Asian waters: The coastal waters of Thailand in focus. Fish People 2019, 17, 12–17. [Google Scholar]
- Wang, G.; Wan, R.; Wang, X.X.; Zhao, F.F.; Lan, X.Z.; Cheng, H.; Theng, W.Y.; Guan, Q.L. Study on the influence of cut-opening ratio, cut-opening shape, and cut-opening number on the flow field of a cubic artificial reef. Ocean Eng. 2018, 162, 341–352. [Google Scholar] [CrossRef]
- Haro, A.; Castro-Santos, T.; Noreika, J.; Odeh, M. Swimming performance of upstream migrant fishes in open-channel flow: A new approach to predicting passage through velocity barriers. Can. J. Fish. Aquat. Sci. 2004, 61, 1590–1601. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kim, D.; Na, W.-B. Estimation of effective usable and burial volumes of artificial reefs and the prediction of cost-effective management. Ocean Coast. Manag. 2016, 120, 135–147. [Google Scholar] [CrossRef]
- Falcao, M.; Santos, M.N.; Vicente, M.; Monteiro, C.C. Biogeochemical processes and nutrient cycling within an artificial reef off Southern Portugal. Mar. Environ. Res. 2007, 63, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Reeds, K.A.; Smith, J.A.; Suthers, I.M.; Johnston, E.L. An ecological halo surrounding a large offshore artificial reef: Sediments, infauna, and fish foraging. Mar. Environ. Res. 2018, 141, 30–38. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, L.; Liang, Z.; Sun, L.; Nie, Z.; Wang, J.; Xie, W.; Jiang, Z. Numerical Study of Efficiency Indices to Evaluate the Effect of Layout Mode of Artificial Reef Unit on Flow Field. J. Mar. Sci. Eng. 2021, 9, 770. [Google Scholar] [CrossRef]
- Rinkevich, B. The Active Reef Restoration Toolbox is a Vehicle for Coral Resilience and Adaptation in a Changing World. J. Mar. Sci. Eng. 2019, 7, 201. [Google Scholar] [CrossRef] [Green Version]
- Bruneel, S.; Van Echelpoel, W.; Ho, L.; Raat, H.; Schoeters, A.; De Troyer, N.; Sor, R.; Ponton-Cevallos, J.; Vandeputte, R.; Van der heyden, C.; et al. Assessing the Drivers behind the Structure and Diversity of Fish Assemblages Associated with Rocky Shores in the Galapagos Archipelago. J. Mar. Sci. Eng. 2021, 9, 375. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.; Cheng, S.; Wang, J. Effects of Artificial Reefs on Phytoplankton Community Structure in Baiyangdian Lake, China. Water 2021, 13, 1802. [Google Scholar] [CrossRef]
- Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M. Fishery Enhancement Reef Building Exercise. Chem. Ecol. 1990, 4, 179–187. [Google Scholar] [CrossRef]
- Godoy, E.A.S.; Almeida, T.C.M.; Zalmon, I.R. Fish assemblages and environmental variables on an artificial reef north of Rio de Janeiro, Brazil. ICES J. Mar. Sci. 2002, 59, S138–S143. [Google Scholar] [CrossRef] [Green Version]
- Shu, A.; Qin, J.; Rubinato, M.; Sun, T.; Wang, M.; Wang, S.; Wang, L.; Zhu, J.; Zhu, F. An Experimental Investigation of Turbulence Features Induced by Typical Artificial M-Shaped Unit Reefs. Appl. Sci. 2021, 11, 1393. [Google Scholar] [CrossRef]
- Androulakis, D.N.; Dounas, C.G.; Banks, A.C.; Magoulas, A.N.; Margaris, D.P. An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete. Sustainability 2020, 12, 4847. [Google Scholar] [CrossRef]
- Glarou, M.; Zrust, M.; Svendsen, J.C. Using Artificial-Reef Knowledge to Enhance the Ecological Function of Offshore Wind Turbine Foundations: Implications for Fish Abundance and Diversity. J. Mar. Sci. Eng. 2020, 8, 332. [Google Scholar] [CrossRef]
- Chie, L.H.; Abd Wahab, A.K. Derivation of Engineering Design Criteria for Flow Field Around Intake Structure: A Numerical Simulation Study. J. Mar. Sci. Eng. 2020, 8, 827. [Google Scholar] [CrossRef]
- Wu, S.; Rubinato, M.; Gui, Q. SPH Simulation of Interior and Exterior Flow Field Characteristics of Porous Media. Water 2020, 12, 918. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-Y.; Shih, R.-S.; Weng, W.-K. Visualization Investigation of Energy Dissipation Induced by Eddy Currents for a Solitary-Like Wave Passing over Submerged Breakwater Sets. J. Mar. Sci. Eng. 2020, 8, 834. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, C.; Han, X.; Niu, H.; Zheng, Y.; Shen, C. Experimental Study on the Influence of an Artificial Reef on Cross-Shore Morphodynamic Processes of a Wave-Dominated Beach. Water 2020, 12, 2947. [Google Scholar] [CrossRef]
- Ozalp, M.K.; Miller, L.A.; Dombrowski, T.; Braye, M.; Dix, T.; Pongracz, L.; Howell, R.; Klotsa, D.; Pasour, V.; Strickland, C. Experiments and Agent Based Models of Zooplankton Movement within Complex Flow Environments. Biomimetics 2020, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinato, M.; Heyworth, J.; Hart, J. Protecting Coastlines from Flooding in a Changing Climate: A Preliminary Experimental Study to Investigate a Sustainable Approach. Water 2020, 12, 2471. [Google Scholar] [CrossRef]
- Harris, L.; Liang, D.; Shao, S.; Zhang, T.; Roberts, G. MPM simulation of solitary wave run-up on permeable boundaries. Appl. Ocean. Res. 2021, 111, 102602. [Google Scholar] [CrossRef]
- Kazemi, E.; Koll, K.; Tait, S.; Shao, S. SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries. Adv. Water Resour. 2020, 140, 103557. [Google Scholar] [CrossRef]
- Kazemi, E.; Tait, S.; Shao, S. SPH-based numerical treatment of the interfacial interaction of flow with porous media International. J. Numer. Methods Fluids 2020, 92, 219–245. [Google Scholar] [CrossRef]
- Jiang, Z.; Liang, Z.; Zhu, L.; Guo, Z.; Tang, Y. Effect of hole diameter of rotary-shaped artificial reef on flow field. Ocean. Eng. 2020, 197, 106917. [Google Scholar] [CrossRef]
- Cardenas-Rojas, D.; Mendoza, E.; Escudero, M.; Verduzco-Zapata, M. Assessment of the Performance of an Artificial Reef Made of Modular Elements through Small Scale Experiments. J. Mar. Sci. Eng. 2021, 9, 130. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, L.; Mei, J.; Guo, Z.; Cong, W.; Liang, Z. Preliminary study on the boundary layer of an artificial reef with regular grooves surface structure. Ocean. Eng. 2021, 219, 108355. [Google Scholar] [CrossRef]
- Zheng, Y.; Kuang, C.; Gu, J.; Han, X.; Ma, Y. Experimental Investigation on Flow Patterns Induced by a Twin-Block Perforated Artificial Reef. In Proceedings of the 30th International Ocean and Polar Engineering Conference, Shanghai, China, 11–16 October 2020. [Google Scholar]
- Wang, X.; Liu, X.; Tang, Y.; Zhao, F.; Luo, Y. Numerical Analysis of the Flow Effect of the Menger-Type Artificial Reefs with Different Void Space Complexity Indices. Symmetry 2021, 13, 1040. [Google Scholar] [CrossRef]
- Kuang, C.; Ma, Y.; Han, X.; Pan, S.; Zhu, L. Experimental Observation on Beach Evolution Process with Presence of Artificial Submerged Sand Bar and Reef. J. Mar. Sci. Eng. 2020, 8, 1019. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, J.; Nie, Z.; Guo, Z.; Zhu, L.; Cong, W.; Chen, Y.; Liang, Z. The Application of Seabed Silt in the Preparation of Artificial Algal Reefs. Appl. Sci. 2020, 10, 7279. [Google Scholar] [CrossRef]
- Yu, D.Y.; Zhao, W.; Wang, F.Y. Trapezoid artificial reefs in different deployment spacing: Physical and numerical simulations. Oceanol. Limnol. Sin. 2020, 51, 283–292. [Google Scholar] [CrossRef]
- Guan, C.T.; Li, M.J.; Zheng, Y.X.; Sun, L.; Nie, Z.; Wang, J.; Xie, W.; Jiang, Z. Numerical simulation of disposal space and analysis on physical stability of three-tube artificial reefs. Period. Ocean. Univ. China 2016, 46, 770. [Google Scholar] [CrossRef]
- Pang, Y.X.; Li, F.C.; Li, Y. Study on three-dimensional numerical simulation of flow field effect of multi-aperture artificial fish reef under identical penetration rate. J. Water Resour. Water Eng. 2017, 28, 1802. [Google Scholar] [CrossRef]
- Scarano, F. Tomographic PIV: Principles and practice. Meas. Sci. Technol. 2013, 24, 28. [Google Scholar] [CrossRef]
- Christensen, K.T.; Scarano, F. Uncertainty quantification in particle image velocimetry. Meas. Sci. Technol. 2015, 26, 070201. [Google Scholar] [CrossRef] [Green Version]
- Markus, R.; Jurgen, K.; Wereley, S.T.; Willert, C.E. Particle image velocimetry: A practical guide. Exp. Fluid Mech. 2017, 255, 160–162. [Google Scholar]
- Rubinato, M.; Seungsoo, L.; Martins, R.; Shucksmith, J. Surface to sewer flow exchange through circular inlets during urban flood conditions. J. Hydroinf. 2018, 20, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.; Rubinato, M.; Kesserwani, G.; Leandro, J.; Djordjevic, S.; Shucksmith, J. On the characteristics of velocity fields on the vicinity of manhole inlet grates during flood events. Water Resour. Res. 2018, 54, 6408–6422. [Google Scholar] [CrossRef]
- Beg, M.d.N.A.; Carvalho, R.F.; Tait, S.; Brevis, W.; Rubinato, M.; Schellart, A.; Leandro, J. A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models. Water Sci. Technol. 2017, 1, 87–98. [Google Scholar] [CrossRef]
- Rojas, S.; Rubinato, M.; Nichols, A.; Shucksmith, J. Cost effective measuring technique to simultaneously quantify 2D velocity fields and depth-averaged solute concentrations in shallow water flows. J. Flow Meas. Instrum. 2018, 64, 213–223. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.X.; Gong, P.H.; Guan, C.T. Numerical simulation and PIV experimental study of the effect of flow fields around tube artificial reefs. Ocean. Eng. 2017, 134, 96–104. [Google Scholar]
- Liu, Y.; Guan, C.T.; Zhao, Y.P.; Cui, Y.; Dong, G.H. Numerical Simulation and PIV Study of Unsteady Flow Around Hollow Cube Artificial Reef with Free Water Surface. Eng. Appl. Comput. Fluid Mech. 2012, 6, 527–540. [Google Scholar] [CrossRef]
- Cui, Y.; Guan, C.T.; Wan, R.; Li, J. Numerical simulation on influence of disposal space on effects of flow field around artificial reefs. Trans. Oceanol. Limnol. 2011, 41, 40–48. [Google Scholar] [CrossRef]
- Liu, J.; Jianzheng, W.U.; Jun, L.I.; Zhao, J.; Wang, L.; Zhang, W. Study of Tidal Current Characteristics in the Western Liaodong Bay. Mar. Geol. Front. 2015, 31, 10–17. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, M.; Ding, D.; Chen, W. Study on Hydrodynamic Characteristics in the Eastern Part of Liaodong Bay Mouth Based on Long-Term Observation. Haiyang Xuebao 2016, 38, 20–30. [Google Scholar]
- Zhang, X.; Gang, S.; Qian, A.Z. Numerical Simulation of Tides and Tidal Currents in Liaodong Bay Based on Fvcom. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-HYFB201203021.htm (accessed on 5 October 2021).
- Zhao, Q.; Chen, C.; Ding, D.; Chen, W. Study on Coastal Current Characteristics in the Eastern Area of Liaodong Bay Based on the Observed Data from Seabed Based Platform. Ocean. Eng. 2016, 34, 118–124. [Google Scholar]
- Zheng, Y.X.; Liang, Z.L.; Guan, C.T. Numerical simulation and experimental study on flow field of artificial reefs in three tube-stacking layouts. Oceanol. Limnol. Sin. 2014, 45, 11–19. [Google Scholar] [CrossRef]
- Yu, C.D.; Yu, C.G.; Yan, S.Q. Hydrodynamic simulation to the best layout of artificial ship-reefs. Oceanol. Limnol. Sin. 2004, 35, 299–305. [Google Scholar]
- Shuiabi, E.; Thomson, V.; Bhuiyan, N. Entropy as a measure of operational flexibility. Eur. J. Oper. Res. 2005, 165, 696–707. [Google Scholar] [CrossRef]
- Pan, L.Z.; Lin, J.; Zhnag, S.Y. A numerical experiment of the effects of artificial reef on vertical 2-dimensional steady flow field. J. Shanghai Fish. Univ. 2005, 9, 770. [Google Scholar] [CrossRef]
- Lin, S.-K. Classical and Statistical Thermodynamics. Ashley H. Carter. Entropy 2002, 4, 165–167. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, Y.; Gou, L.; Pang, B. An Entropic Approach to Estimating the Instability Criterion of People in Floodwaters. Entropy 2021, 23, 74. [Google Scholar] [CrossRef]
- Li, G.; Shuang, F.; Zhao, P.; Le, C. An Improved Butterfly Optimization Algorithm for Engineering Design Problems Using the Cross-Entropy Method. Symmetry 2019, 11, 1049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhou, J.; Zhou, R. Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method. Entropy 2018, 20, 715. [Google Scholar] [CrossRef] [Green Version]
- Al-Kouz, W.; Al-Muhtady, A.; Owhaib, W.; Al-Dahidi, S.; Hader, M.; Abu-Alghanam, R. Entropy Generation Optimization for Rarified Nanofluid Flows in a Square Cavity with Two Fins at the Hot Wall. Entropy 2019, 21, 103. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.-X.; Lu, C.-H.; Ta, N.; Jiang, W.-W.; Tang, X.-J.; Wu, H.-T. Application of a Speedy Modified Entropy Method in Assessing the Complexity of Baroreflex Sensitivity for Age-Controlled Healthy and Diabetic Subjects. Entropy 2019, 21, 894. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, N.-K.; Lin, W.-Y.; Young, H.-T. High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method. Entropy 2015, 17, 2170–2183. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, Y.; Kang, N.; Kim, H.S. Application of the Entropy Method to Select Calibration Sites for Hydrological Modeling. Water 2015, 7, 6719–6735. [Google Scholar] [CrossRef] [Green Version]
- Yonamoto, Y. Application of Maximum Entropy Method to Semiconductor Engineering. Entropy 2013, 15, 1663–1689. [Google Scholar] [CrossRef]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Reis, B.; van der Linden, P.; Sousa Pinto, I.; Almada, E.; Borges, M.T.; Hall, A.E.; Stafford, R.; Herbert, R.J.; Lobo-Arteaga, J.; Gaudêncio, M.J.; et al. Artificial Reefs in the North-East Atlantic Area: Present Situation, Knowledge Gaps and Future Perspectives. Preprints 2021, 2021010238. [Google Scholar] [CrossRef]
- Komyakova, V.; Chamberlain, D.; Jones, G.P.; Swearer, S.E. Assessing the performance of artificial reefs as substitute habitat for temperate reef fishes: Implications for reef design and placement. Sci. Total. Environ. 2019, 668, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Vivier, B.; Dauvin, J.C.; Navon, M.; Rusig, A.M.; Mussio, I.; Orvain, F.; Boutouil, M.; Claquin, P. Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness. Glob. Ecol. Conserv. 2021, 27, e01538. [Google Scholar] [CrossRef]
- Rubinato, M.; Luo, M.; Zheng, X.; Pu, J.H.; Shao, S. Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments. Water 2020, 12, 1768. [Google Scholar] [CrossRef]
- Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, J.; Lashford, C.; Cai, Y.; Lin, P.; Tait, S. Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Sci. Eng. 2019, 12, 274–283. [Google Scholar] [CrossRef]
Experimental Group (Test Case) | L (mm) | u0 (m/s) | Q (L/s) |
---|---|---|---|
0 (1–5) | \ | 0.085 | 20 |
1 (1–5) | 283 | 0.13 | 30 |
2 (1–5) | 377 | 0.17 | 40 |
3 (1–5) | 471 | 0.214 | 50 |
4 (1–5) | 566 | 0.257 | 60 |
Section (Type) | Longitudinal Velocity Distribution | Section (Type) | Longitudinal Velocity Distribution | ||||||
---|---|---|---|---|---|---|---|---|---|
u0 | |||||||||
a | b | R2 | a | b | c | R2 | |||
A (I) | 0.085 m/s | 0.0617 | 0.1042 | 0.98 | M (IV) | 0.00954 | 0.08163 | 1.23484 | 0.99 |
0.130 m/s | 0.0173 | 0.1051 | 0.98 | 0.11864 | 0.13492 | 2.91120 | 0.99 | ||
0.170 m/s | 0.0207 | 0.1171 | 0.99 | 0.04705 | 0.06567 | 0.59773 | 0.99 | ||
0.214 m/s | 0.0198 | 0.1013 | 0.98 | 0.23196 | 0.17871 | 4.19658 | 0.99 | ||
Section (Type) | Longitudinal velocity distribution | ||||||||
u0 | |||||||||
a | b | c | R2 | a | b | c | R2 | ||
D (II) | 0.085 m/s | −0.04786 | 0.02351 | 1.2781 | 0.99 | 0.11587 | 0.01855 | −1.22938 | 0.90 |
0.130 m/s | −0.03855 | 0.01055 | 1.91429 | 0.99 | 0.12055 | 0.02109 | −1.19501 | 0.98 | |
0.170 m/s | −0.07181 | 0.04590 | 1.00823 | 0.99 | 0.13299 | 0.01851 | −1.21682 | 0.94 | |
0.214 m/s | −0.02744 | 0.02529 | 1.21683 | 0.99 | 0.12385 | 0.01427 | −1.22469 | 0.95 | |
J (III) | 0.085 m/s | −0.04405 | 0.01437 | 1.51288 | 0.99 | 0.13509 | 0.01619 | −1.47371 | 0.99 |
0.130 m/s | −0.03004 | 0.01074 | 1.56525 | 0.99 | 0.12347 | 0.01912 | −1.45391 | 0.99 | |
0.170 m/s | −0.03531 | 0.01623 | 1.33927 | 0.99 | 0.11999 | 0.02513 | −1.32204 | 0.99 | |
0.214 m/s | −0.02538 | 0.01477 | 1.44130 | 0.99 | 0.13196 | 0.01588 | −1.44713 | 0.99 |
Spacing | Length of the Experimental Section (mm) | Width of the Experimental Section (mm) | Representative Area (m2) | Cost per Square Meter of the Monocase (CNY) | Cost of the Experimental Section (CNY) | Cost per Square Meter (CNY/m2) |
---|---|---|---|---|---|---|
0.75 L | 1400 | 800 | 2800 | 435.07 | 88,319.21 | 31.5426 |
1.00 L | 1600 | 800 | 3200 | 435.07 | 88,319.21 | 27.5998 |
1.25 L | 1800 | 800 | 3600 | 435.07 | 88,319.21 | 24.5331 |
1.50 L | 2000 | 800 | 4000 | 435.07 | 88,319.21 | 22.0798 |
Index Type | No Economic Cost Index | Including Economic Cost Index | Index | No Economic Cost Index | Including Economic Cost Index |
---|---|---|---|---|---|
Weight I | Weight II | Weight I | Weight II | ||
Velocity distribution | 9.35% | 8.68% | Uave | 9.35% | 8.68% |
Upwelling | 43.94% | 40.77% | vmax | 6.97% | 6.47% |
vave | 7.44% | 6.90% | |||
Hupmax | 7.92% | 7.35% | |||
Lupmax | 11.55% | 10.71% | |||
Sup | 10.06% | 9.34% | |||
Back vortex | 25.73% | 23.89% | Hbmax | 8.13% | 7.55% |
Lbmax | 9.65% | 8.96% | |||
Sb | 7.95% | 7.38% | |||
Turbulence intensity | 20.98% | 19.47% | Mean longitudinal turbulence intensity | 10.48% | 9.73% |
Mean vertical turbulence intensity | 10.50% | 9.74% | |||
Economic cost | - | 7.19% | Cost per square meter | - | 7.19% |
Side Length (m) | Area (m2) | Number of Monocases | Economic Cost (Yuan) | |
---|---|---|---|---|
Original design unit reef | 50 | 2500 | 22 | 9571.54 |
Adjusted unit reef | 52.5 | 2756.25 | 20 | 8701.40 |
Original design reef cluster | 200 | 40,000 | 110 | 47,857.70 |
Adjusted reef cluster | 205 | 42,025 | 100 | 43,507.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, A.; Rubinato, M.; Qin, J.; Zhu, J.; Sun, T.; Yang, W.; Wang, M.; Zhang, Z. The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea. J. Mar. Sci. Eng. 2021, 9, 1155. https://doi.org/10.3390/jmse9111155
Shu A, Rubinato M, Qin J, Zhu J, Sun T, Yang W, Wang M, Zhang Z. The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea. Journal of Marine Science and Engineering. 2021; 9(11):1155. https://doi.org/10.3390/jmse9111155
Chicago/Turabian StyleShu, Anping, Matteo Rubinato, Jiping Qin, Jiapin Zhu, Tao Sun, Wei Yang, Mengyao Wang, and Ziyue Zhang. 2021. "The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea" Journal of Marine Science and Engineering 9, no. 11: 1155. https://doi.org/10.3390/jmse9111155
APA StyleShu, A., Rubinato, M., Qin, J., Zhu, J., Sun, T., Yang, W., Wang, M., & Zhang, Z. (2021). The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea. Journal of Marine Science and Engineering, 9(11), 1155. https://doi.org/10.3390/jmse9111155