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Abstract: Engineering design optimization in real life is a challenging global optimization problem,
and many meta-heuristic algorithms have been proposed to obtain the global best solutions.
An excellent meta-heuristic algorithm has two symmetric search capabilities: local search and
global search. In this paper, an improved Butterfly Optimization Algorithm (BOA) is developed by
embedding the cross-entropy (CE) method into the original BOA. Based on a co-evolution technique,
this new method achieves a proper balance between exploration and exploitation to enhance its
global search capability, and effectively avoid it falling into a local optimum. The performance of the
proposed approach was evaluated on 19 well-known benchmark test functions and three classical
engineering design problems. The results of the test functions show that the proposed algorithm
can provide very competitive results in terms of improved exploration, local optima avoidance,
exploitation, and convergence rate. The results of the engineering problems prove that the new
approach is applicable to challenging problems with constrained and unknown search spaces.

Keywords: global optimization; meta-heuristic; butterfly optimization algorithm; cross-entropy method;
engineering design problems

1. Introduction

Real-world engineering design optimization problems are very challenging to find the global
optimum of a highly complex and multiextremal objective function, involving many different decision
variables under complex constraints [1,2]. A general engineering design optimization problem can be
stated as follows:

min f (x), x = (x1, x2, · · · , xn)
T ∈ Rn, (1)

subject to
gj(x) ≤ 0, j = 1, 2, · · · , p, (2)

hk(x) = 0, k = 1, 2, · · · , q, (3)

lbi ≤ xi ≤ ubi, i = 1, 2, · · · , n, (4)

where n is the number of search space dimensions, gj(x) and hk(x)are the jth inequality constraint
and kth equality constraint, respectively. lbi and ubi represent the lower and upper bound of the value
of xi.

Most of the constraints of the global optimization problem are nonlinear. Such nonlinearity
often results in a multimodal response landscape [3]. Due to their high complexity, nonlinearity,
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and multimodality, traditional optimization methods, such as gradient-based optimization algorithms,
are no longer suitable for this problem [4]. Many researchers have developed various derivative-free
global optimization methods for it. In general, these methods can be divided into two classes:
deterministic methods and stochastic meta-heuristic algorithms [4,5]. The former, such as the
Hill-Climbing [6], Newton–Raphson [7], and DIRECT algorithm [8], can obtain the same optimal results
based on the same set of initial values. However, this behavior results in local optima entrapment and
a loss of reliability in finding the global optimum, since most real engineering design problems have
extremely high numbers of local solutions [9]. The latter, such as the Genetic Algorithm (GA) [10,11],
Particle Swarm Optimization (PSO) [12], Cuckoo Search (CS) [13], Bat Algorithm (BA) [14], Grey Wolf
Optimizer (GWO) [15], Forest Optimization Algorithm (FOA) [16,17], Ant Lion Optimizer (ALO) [9],
Whale Optimization Algorithm (WOA) [18], Crow Search Algorithm (CSA) [19], Salp Swarm Algorithm
(SSA) [20], and Butterfly Optimization Algorithm (BOA) [21,22], mostly benefit from their simplicity,
flexibility, and stochastic operators, which makes them different from deterministic methods [4],
and they have become very popular optimization techniques for such optimization problems in
recent years.

Despite the merits of nature-inspired meta-heuristic algorithms, it has been pointed out that most
of them are unable to guarantee global convergence [23]. At the same time, the No Free Lunch (NFL)
theorem has proved that none of these methods are able to solve all global optimization problems [24].
They perform very well when dealing with certain optimization problems, but fail in most cases.
An excellent meta-heuristic algorithm has two symmetric search capabilities: local search and global
search, and achieves a proper balance between exploration and exploitation to effectively avoid it
falling into a local, and find the global optimum. In order to enhance global search capabilities,
many hybrid meta-heuristic algorithms have been developed by combining meta-heuristics with exact
algorithms or other meta-heuristics for solving more complicated optimization problems [25–29].

Inspired by the idea of global random search algorithms [5,30], and based on co-evolution, this
paper explores an improved butterfly optimization algorithm (BOA) using the cross-entropy method,
which is a global stochastic optimization method based on a statistical model. The original BOA
was proposed by Arora and Singh [21] in 2015, and was inspired by the food foraging behavior
of butterflies, while the cross-entropy (CE) method was developed by Rubinstein [31] in 1997 to
estimate the probability of rare events in complex random networks. Since the BOA has a tendency to
prematurely converge to local optima [32], this paper embeds the CE method into the BOA to obtain a
good balance between exploration and exploitation and improve the BOA’s global search capability.

The rest of this paper is structured as follows. In Section 2, the BOA and CE method are briefly
introduced, and a study of the improved BOA is presented in Section 3. The results and a discussion
of benchmark functions are provided in Section 4. Section 5 solves three classical engineering design
problems. In Section 6, conclusions and future research directions are presented.

2. Methods

2.1. Butterfly Optimization Algorithm

The BOA is a new nature-inspired meta-heuristic algorithm which was inspired by the food
foraging behavior of butterflies [21,22]. In this method, the characteristics of butterflies are ideally
summarized as follows:

1. All butterflies are assumed to emit some fragrance that makes the butterflies attractive to
each other;

2. Each butterfly moves randomly or toward the best butterfly—i.e., the one which emits the
most fragrance;

3. The stimulus intensity of a butterfly is determined by the landscape of the objective function.
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In the BOA, the perceived magnitude of the fragrance ( f ) is defined as a function of the stimulus
physical intensity as follows:

f = cIa, (5)

where c ∈ [0, ∞] is the sensory modality; I is the stimulus intensity, which is associated with
the encoded objective function; and a ∈ [0, 1] is the power exponent dependent on modality,
which represents the varying degree of fragrance absorption.

There are two key steps in the BOA: global search and local search. The former can make the
butterflies move toward the best butterfly, which can be represented as

xt+1
i = xt

i + (r2 × g∗ − xt
i )× fi, (6)

where xt
i is the position of the ith butterfly at time t. Here, g∗ represents the current best position.

fi represents the fragrance of the ith butterfly, and r is a random number in [0, 1].
The latter is implemented through a local random walk, which can be represented as

xt+1
i = xt

i + (r2 × xt
j − xt

k)× fi, (7)

where xt
j and xt

k are the positions of the jth and kth butterflies in the solution space, respectively, and r
is a random number in [0, 1].

Additionally, a switch probability p is used in the BOA to switch between a common global
search and an intensive local search. Based on the above, the original BOA can be implemented with
pseudo-code as shown in Algorithm 1:

Algorithm 1: Butterfly Optimization Algorithm
Begin

Objective function f (x), x = (x1, x2, . . . , xd)
T , here d represents the number of dimensions.

Generate initial population P containing n butterflies popi(i = 1, 2, . . . , n).
Stimulus Ii intensity at is popi determined by the fitness value f (popi).
Define sensor modality c, power exponent a, and switch probability p.
while stop criteria not met do

for each butterfly in the population P do
Calculate fragrance f using Equation (5).

end for
Evaluate and rank the population P, and find the best butterfly.
for each butterfly in the population P do

Generate a random number r ∼ U[0, 1].
if (r < p)

Implement global search using Equation (6).
else

Implement local search using Equation (7).
end if

end for
Update the value of the power exponent a.

end while
Output the best solution and optimal value.

End
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BOA shows better performance compared to some other optimization algorithms [21,22] and
has attracted the attention of many researchers due to its simplicity and interesting nature-inspired
interpretations as an optimization approach for global optimization problems and for various real-life
applications [32,33].

2.2. The Cross-Entropy (CE) Method

Based on Monte Carlo technology, Rubinstein [31] developed the CE method in 1997 and
uses the cross-entropy or Kullback–Leibler divergence to measure the distance between two
sampling distributions, solve an optimization problem by minimizing this distance, and obtain the
optimal parameters of probability distribution. The CE method has good global search capability,
excellent adaptability, and strong robustness. It is frequently used for many complex optimization
problems such as continuous multi-extremal optimization [34], multi-objective optimization [35],
combination optimization [36,37], vehicle routing problems [38], energy-efficient radio resource
management [39], and complex optimization problems from other fields [40–43].

A general optimization problem can be stated as follows:

min
x∈X

S(x), (8)

where X is a finite set of states, and S is a real-valued performance function on X .
Next, we can construct a probability distribution estimation problem associated with the above

problem, and the auxiliary problem can be defined as follows:

l(γ) = Pu(S(X) ≤ γ) = Eu[I{S(X)≤γ}], (9)

where Pu is the probability measure under which the random state X has some probability density
function f (x; u) onX ; Eu is the corresponding expectation operator; γ represents a threshold parameter;
and I represents the indicator function, whose value is 1, if S(X) ≤ γ, and 0, otherwise. The importance
sampling approach is used to reduce the sample size in the CE method. Consequently, Equation (9)
can be rewritten as follows:

l(γ) =
1
N

N

∑
i=1

IS(X)≤γ
f (xi; v)
g(xi)

, (10)

where xi represents a random sample from f (x; v) with importance sampling density g(x).
the Kullback–Leibler divergence, i.e., the cross-entropy is introduced to measure the distance between
two sampling distributions for obtaining the optimal importance sampling density. Thus, the optimal
density g∗(x) can be found by minimizing the Kullback–Leibler divergence, which is equivalent to
solving the following optimization problem [34]:

min
v

1
N

N

∑
i=1

IS(X)≤γ ln f (xi; v). (11)

In order to improve the convergence speed of the CE method, adaptive smoothing v̂k is demoted
by ṽ, as follows:

v̂k+1 = αṽ + (1− α)v̂k, (12)

where 0 ≤ α ≤ 1 is a smoothing parameter.
The CE method for optimization problems is described in Algorithm 2.
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Algorithm 2: Cross-entropy (CE) for optimization problems
Begin

Set t = 0. Initialize the probability parameter v̂k.
while stop criteria for CE not met do

Generate S1, S2, . . . , SN ∼iid f (x; v̂k). Evaluate and rank the sample S.
Solve the problem given in Equation (11) based on the sample S. Denote the solution

by ṽ.
Update the parameter v̂k using ṽ.
Set t = t + 1.

end while
Output the best solution and optimal value.

End

3. Hybrid BOA-CE Method

This section presents the details of the improved algorithm, named BOA-CE. A meta-heuristic
method should have two main functions—exploration and exploitation—and should try to find a
proper balance between them for better performance [44]. The nature-inspired BOA has shown
the advantages of excellent local search capability and fast convergence; however, it tends to fall
into a local optimum rather than finding the global optimum [21,22,32,33]. In order to improve
the global search capability of the BOA, and, based on a co-evolutionary technique, this paper
proposes the BOA-CE algorithm by embedding the CE method into it. The new method contains
BOA and CE optimization operators, and co-updates the BOA population P and the CE sample S
using co-evolutionary technology in each iteration. The CE operator obtains the initial probability
parameters using the BOA population P in order to improve its convergence rate while the BOA
operator updates its population P and the best butterfly using the elite sample Se of the CE operator
to enhance the population diversity. The pseudo-code of the BOA-CE hybrid algorithm is described
in Algorithm 3. Figure 1 presents the flow chart of the BOA-CE algorithm, and the co-evolutionary
process between BOA operator and CE operator can be clearly seen from Figure 1.

In addition, as an example, we use the BOA-CE algorithm to find the global optimum of the 2D
Sphere function in order to more clearly describe the co-evolutionary process of the BOA operator and
the CE operator:

f (x) = x1
2 + x2

2, −100 ≤ x1, x2 ≤ 100, (13)

which has a global minimum f ∗ = 0 at x∗ = (0, 0)T . Now, let us use the BOA-CE algorithm to
find the optima and this process is summarized as follows: (1) the values of the parameters of
the BOA operator are c = 0.01, a = 0.1, p = 0.8, the population size n = 40, and the maximum
number of iteration t1 = 50, while the values of the parameters of the CE operator are α = 0.8,
the sample size N = 80, the elite sample size Ne = 30, and the maximum number of iteration t2 = 2;
(2) initializing the population of the BOA operator P, calculating fi(x) = x2

i1 + x2
i2, i = 1, 2, · · · , 40,

and finding the current best f ∗ = 13.5036 and x∗ = (−3.5586,−0.9164)T ; (3) generating a rand number
r, and updating xi with xnew

i = xold
i + (r2 × f ∗ − xold

i ) × fi if r ≤ p and xnew
i = xold

i + (r2 × xold
j −

xold
k ) × fi otherwise for each butterfly in the P; (4) calculating the mean µ = (−4.9571,−11.4528)

and standard σ = (60.2592, 53.9977) deviation of P, and using them to initialize the probability
parameter v = (−4.9571,−11.4528, 60.2592, 53.9977); (5) generating a sample S by the probability
parameter v, and calculating fi(x) = x2

i1 + x2
i2, i = 1, 2, · · · , 80, and finding the new current best

f ∗ = 4.4290 and x∗ = (1.8693, 0.9668)T ; (6) updating the probability parameter v using the elite
sample, and regenerating a sample S using the new parameter v, and finding the new current best
f ∗ = 2.4542 and x∗ = (0.8951, 1.2857)T ; (7) co-updating the population P using the sample S and
the population P; (8) repeating the above operations until the termination condition (t1 > 50) is
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met, and outputting the approximate optimal solution x∗ = (1.1154× 10−31,−2.5727× 10−32)T and
function value f ∗ = 1.3104× 10−62. Figure 2 clearly describes the of co-updating the current best f ∗ by
the BOA operator and CE operator.

Algorithm 3: BOA-CE algorithm
Begin

Objective function f (x), x = (x1, x2, . . . , xd)
T ; here, d represents the number of dimensions.

Generate initial population P containing n butterflies popi(i = 1, 2, . . . , n).
Stimulus Ii intensity at is popi determined by the fitness value f (popi).
Define sensor modality c, power exponent a, and switch probability p.
while stop criteria not met do

for each butterfly in the population P do
Calculate fragrance f using Equation (5).

end for
Evaluate,rank P, and find the best butterfly.
for each butterfly in the population P do

Generate a random number r ∼ U[0, 1].
if (r < p)

Implement global search using Equation (6).
else

Implement local search using Equation (7).
end if

end for
Update the value of the power exponent a.
Evaluate and rank the population P.
Initialize the probability parameter v̂k using the population P.
while stop criteria for CE not met do

Generate S1, S2, . . . , SN ∼iid f (x; v̂k), evaluate the sample S.
Rank the population P and the sample S together, co-update P and S, update the

best butterfly.
Calculate the probability parameter ṽ by the elite sample Se.
Update the probability parameters v̂k via Equation (12).

end while
end while
Output the best solution and optimal value.

End

The BOA-CE hybrid algorithm has two main operators: BOA and CE. The BOA operator has
two inner loops for the butterflies population size n1, and one outer loop for iteration t1. While the
CE operator has one inner loops for the sample size n2, and two outer loops for iterations t1 and
t2, respectively. Therefore, for our proposed hybrid algorithm (BOA-CE), the time complexity is
O(2n1t1 + n2t1t2). It is linear in terms of t1t2, which represents the total number of iterations in the
BOA-CE.
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Figure 1. The flow chart of the BOA-CE algorithm.
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4. Experiment and Results

In this section, a total of 19 test functions [45,46] with different characteristics were
employed to benchmark the performance of the proposed BOA-CE algorithm from different
perspectives [9,15,16,20,28]. The test functions can be divided into three classes: unimodal (Table 1),
multimodal (Table 2), and composite functions (Table 3). Generally, unimodal functions are employed
to benchmark the exploitation and convergence of a method, while multimodal functions are
selected to evaluate the performance of exploration and local optima avoidance [9,20]. In contrast,
composite functions can be used to evaluate the combined performance of exploration and exploitation.

Table 1. Unimodal benchmark functions.

Function Dim Range Fmin

F1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0
F2(x) = ∑n

i=1 |xi|+ ∏n
i=1 |xi| 30 [−10, 10] 0

F3(x) = ∑n
i=1(∑

i
j=1 xj)

2 30 [−100, 100] 0
F4(x) = max

i
{|xi| , 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30] 0

F6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

F7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Table 2. Multi-modal benchmark functions.

Function Dim Range Fmin

F8(x) = ∑n
i=1−xi sin (

√
|xi|) 30 [−500, 500] −12,569.487

F9(x) = ∑n−1
i=1 [x

2
i − 10 cos (2πxi) + 10] 30 [−5.12, 5.12] 0

F10(x) = −20 exp (−0.2
√

1
n ∑n

i=1 x2
i )− exp ( 1

n ∑n
i=1 cos (2πxi)) 30 [−32, 32] 0

+20 + e
F11(x) = 1

4000 ∑n
i=1 x2

i −∏n
i=1 cos ( xi√

i
) + 1 30 [−600, 600] 0

F12(x) = π
n {10 sin2 (πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2 (πyi+1) 30 [−50, 50] 0
+(yn + 1)2]}+ ∑n

i=1 u(xi, 10, 100, 4)
yi = 1 + xi+1

4

u(xi, a, k, m) =


k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

F13(x) = 0.1{sin2 (3πx1) + ∑n
i=1(xi − 1)2[1 + sin2 (3πxi + 1)]} 30 [−50, 50] 0

+∑n
i=1 u(xi, 5, 100, 4)

To verify the results, the proposed BOA-CE algorithm was compared against a number of
well-known and recent algorithms: Genetic Algorithm (GA) [10], PSO [12], BA [14], GWO [15],
CSA [19], SSA [20], and BOA [31]. The variants were coded in the MATLAB R2018b, running on a
PC with an Intel Core i7-8700 processor (Gainesville, FL, USA), a 3.19 GHz CPU, and 16 GB of RAM.
To provide a fair comparison, the following test experimental conditions and settings were used: (1) the
population size of the BOA operator in the BOA-CE algorithm was set to 40, while the CE operator’s
sample size was 80. The maximum number of iterations of the BOA operator and CE operator
were 500 and 2, respectively; (2) the other method’s population sizes were 100 for fair comparison,
and their maximum number of iterations was 1000; (3) all of the other parameters in each algorithm
for comparison were as the same as those used in the original references [10,12,14,15,19,20,31]. Each of
the algorithms was run 30 times on each of the test functions, and the results are shown in Tables 4–6.
The average value and standard deviation of the best solution obtained by each method is given to
compare their overall performance. The winner (best value) is highlighted in bold.
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Table 3. Composite benchmark functions.

Function 1 Dim Range Fmin

F14(CF1)
f1, f2, . . . , f10 = Sphere Function, 10 [−5, 5] 0
[λ1, λ2, . . . , λ10] = [1, 1, . . . , 1], [σ1, σ2, . . . , σ10] = [1/100, 5/100, . . . , 5/100]
F15(CF2)
f1, f2, . . . , f10 = Griewank’s Function, 10 [−5, 5] 0
[λ1, λ2, . . . , λ10] = [1, 1, . . . , 1], [σ1, σ2, . . . , σ10] = [1/100, 5/100, . . . , 5/100]
F16(CF3)
f1, f2, . . . , f10 = Griewank’s Function, 10 [−5, 5] 0
[λ1, λ2, . . . , λ10] = [1, 1, . . . , 1], [σ1, σ2, . . . , σ10] = [1, 1, . . . , 1]
F17(CF4)
f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function, 10 [−5, 5] 0
f9, f10 = Sphere Function, [λ1, λ2, . . . , λ10] = [1, 1, . . . , 1],
[σ1, σ2, . . . , σ10] = [ 5

32 , 5
32 , 1, 1, 5

0.5 , 5
0.5 , 5

100 , 5
100 , 5

100 , 5
100 ]

F18(CF5)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’sGriewank’s Function, 10 [−5, 5] 0
f9, f10 = Sphere Function, [λ1, λ2, . . . , λ10] = [1, 1, . . . , 1],
[σ1, σ2, . . . , σ10] = [ 1

5 , 1
5 , 5

0.5 , 5
0.5 , 5

100 , 5
100 , 5

32 , 5
32 , 5

100 , 5
100 ]

F19(CF6)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’sGriewank’s Function,
f9, f10 = Sphere Function, [λ1, λ2, . . . , λ10] = [1, 1, . . . , 1], 10 [−5, 5] 0
[λ1, λ2, . . . , λ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1],
[σ1, σ2, . . . , σ10] = [0.1× 1

5 , 0.2× 1
5 , 0.3× 0.4× 5

0.5 , 0.5× 5
0.5 ,

0.6× 5
100 , 0.7× 5

100 , 0.8× 5
32 , 0.9× 5

32 , 1× 5
100 , 5

100 ]
1 Mathematical formulation of Sphere, Ackley, Rastrigin, Weierstrass, and Griewank can be found in Appendix A A1.

4.1. Results of the Algorithms Using Unimodal Test Functions

The results of the application of the algorithms to unimodal test functions are shown in Table 4.
The best results are highlighted in bold. From Table 4, it can be found that: (1) the proposed method
outperforms GA, PSO, BA, CSA, SSA, and BOA for the majority of the test functions; and (2) BOA-CE
and GWO each provide the best results for three of these problems. This is due to the co-evolutionary
technology that are adopted between the BOA and CE operators to enhance exploitation.

The progress of the average best value over 30 runs for some of the benchmark functions, such
as F1, F2, F6, and F7, is illustrated in Figure 3. The figure clearly shows that the proposed BOA-CE
algorithm rapidly converges towards the optimum and exploits it accurately. This benefit is mainly
due to the algorithm’s excellent exploitation.

4.2. Results of the Algorithms Using Multimodal Test Functions

The results of the application of the algorithms to multimodal test functions are shown in Table 5.
Table 5 shows that the BOA-CE method outperforms the other approaches in the majority of the test
cases. Multimodal test functions are employed to benchmark the performance in terms of exploration
and local optima avoidance. Therefore, these results prove that the BOA-CE algorithm has an excellent
exploration which helps it to explore the promising regions of the search space. Additionally, the local
optima avoidance of the improved method is also excellent, since it is able to avoid all of the local
optima and find the global optimum for the majority of the multimodal test functions.



Symmetry 2019, 11, 1049 10 of 20

Table 4. Results of unimodal benchmark functions.

Fun. Metr. GA PSO BA GWO CSA SSA BOA BOA-CE

F1
Mean 1.44× 10−07 1.43× 10−15 1.46× 10−04 1.97× 10−90 1.20× 10−03 6.70× 10−09 1.57× 10−14 1.26 × 10−95

SD 4.32× 10−07 3.42× 10−15 7.98× 10−04 5.36× 10−90 5.64× 10−04 1.23× 10−09 7.69× 10−16 9.78 × 10−96

F2
Mean 1.48× 10−02 7.50× 10−07 2.57× 10+01 2.92 × 10−52 7.16× 10−01 6.00× 10−06 9.14× 10−12 3.60× 10−47

SD 6.05× 10−02 3.30× 10−06 3.93× 10+01 3.35 × 10−52 4.51× 10−01 1.33× 10−06 1.37× 10−12 2.50× 10−47

F3
Mean 5.20× 10−01 2.30× 10+00 2.42× 10+03 1.74 × 10−26 8.30× 10+00 8.33× 10−10 1.60× 10−14 2.44× 10−09

SD 1.95× 10−01 1.18× 10+00 2.18× 10+03 5.09 × 10−26 4.74× 10+00 3.05× 10−10 9.73× 10−16 1.83× 10−10

F4
Mean 1.88× 10−01 2.01× 10−01 3.56× 10+01 1.74 × 10−21 1.35× 10+00 1.23× 10−05 1.09× 10−11 8.82× 10−07

SD 4.63× 10−01 6.33× 10−02 6.27× 10−13 2.81 × 10−21 6.84× 10−01 1.99× 10−06 6.72× 10−13 1.51× 10−07

F5
Mean 1.87× 10+01 4.28× 10+01 1.47× 10+02 2.62× 10+01 4.19× 10+01 1.26 × 10+01 2.89× 10+01 2.79× 10+01

SD 2.82× 10+01 3.07× 10+01 2.71× 10+02 6.30× 10−01 2.82× 10+01 2.86× 10+01 3.95 × 10−02 2.56× 10−01

F6
Mean 1.56× 10−07 1.47× 10−15 1.06× 10−14 1.10× 10−01 9.65× 10−04 4.74× 10−10 5.05× 10+00 0

SD 2.37× 10−07 2.20× 10−15 5.40× 10−14 1.58× 10−01 4.19× 10−04 1.44× 10−10 5.34× 10−01 0

F7
Mean 3.79× 10−01 3.22× 10−02 1.25× 10−01 3.99× 10−04 9.87× 10−03 2.06× 10−03 6.68× 10−04 3.29 × 10−04

SD 9.79× 10−02 1.12× 10−02 4.30× 10−02 1.65× 10−04 4.50× 10−03 1.22× 10−03 3.25× 10−04 1.52 × 10−04

Table 5. Results of multi-modal benchmark functions.

Fun. Metr. GA PSO BA GWO CSA SSA BOA BOA-CE

F8
Mean −10, 486.64 −6500.75 −3525.02 −6941.03 −7294.61 −2824.35 −4246.74 −4017.15

SD 626.18 819.29 192.65 641.14 801.93 211.32 350.36 323.25

F9
Mean 1.33× 10+00 3.24× 10−01 1.35× 10+02 3.45× 10+01 1.87× 10+01 1.21× 10+01 3.03 × 10−14 1.01× 10+01

SD 1.23× 10+00 1.78× 10+00 3.38× 10+01 1.14× 10+01 7.82× 10+00 5.86× 10+00 1.46 × 10−13 3.46× 10+01

F10
Mean 1.76× 10−04 1.10× 10−14 1.64× 10+01 1.89× 10−08 2.56× 10+00 4.24× 10−01 1.01× 10−11 4.44 × 10−15

SD 7.59× 10−05 3.11× 10−15 2.30× 10+00 1.72× 10−08 6.99× 10−01 6.81× 10−01 1.10× 10−12 0

F11
Mean 1.23× 10−03 8.70× 10−04 1.22× 10+02 1.29× 10−02 2.89× 10−02 2.47× 10−01 5.59× 10−16 0

SD 3.41× 10−03 2.68× 10−03 5.54× 10+01 1.45× 10−02 1.34× 10−02 1.46× 10−01 5.64× 10−16 0

F12
Mean 5.19× 10−02 1.35× 10−02 1.82× 10+01 9.96 × 10−18 6.25× 10−01 8.53× 10−02 3.84× 10−01 2.02× 10−05

SD 1.12× 10−01 9.37× 10−03 5.84× 10+00 1.13 × 10−17 5.39× 10−01 2.11× 10−01 1.13× 10−01 8.76× 10−05

F13
Mean 5.09× 10−03 1.51× 10−01 3.85× 10+01 1.10× 10−03 1.20× 10−02 7.32× 10−04 2.24× 10+00 1.35 × 10−32

SD 1.23× 10−02 1.43× 10−01 1.62× 10+01 3.35× 10−03 1.51× 10−02 2.79× 10−030 4.04× 10−01 5.57 × 10−48
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Table 6. Results of composite benchmark functions.

Fun. Metr. GA PSO BA GWO CSA SSA BOA BOA-CE

F14
Mean 46.67 70.00 70.00 45.90 26.67 43.33 270.28 23.33

SD 50.74 95.23 83.67 71.84 44.98 67.89 58.82 43.02

F15
Mean 57.91 128.09 139.61 115.17 116.59 27.77 262.27 104.76

SD 62.53 76.97 95.29 82.14 61.98 17.39 110.66 72.26

F16
Mean 154.18 172.96 348.41 160.34 240.86 195.18 374.19 105.92

SD 42.63 75.64 111.53 48.84 66.57 38.64 57.17 59.17

F17
Mean 305.43 378.64 452.73 360.09 424.94 319.45 602.76 264.51

SD 35.95 128.17 114.34 105.96 92.62 27.58 85.08 96.10

F18
Mean 53.09 92.41 85.22 56.75 9.49 14.10 130.84 71.00

SD 79.02 136.96 150.90 62.29 17.69 29.53 59.39 47.42

F19
Mean 627.64 765.17 745.07 698.91 497.13 55.26 819.40 790.79

SD 192.16 191.11 198.03 201.69 17.93 152.72 112.13 153.62
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Figure 3. Convergence of algorithms when applied to some unimodal benchmark functions.

Figure 4 shows the convergence curves of the algorithms when applied to some of the multimodal
test functions, such as F10, F11, F12, and F13. The figure shows that the BOA-CE algorithm has the
fastest convergence for the majority of the multimodal test functions.
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Figure 4. Convergence of algorithms on some unimodal benchmark functions.

4.3. Results of the Algorithms on Composite Test Functions

The results of composite test functions are reported in Table 6. From Table 6, we can find that
the BOA-CE algorithm outperforms others in most of the composite test functions. Considering
the characteristics of composite test functions and these results, it may be stated that the BOA-CE
algorithm appropriately balances exploration and exploitation to focus on the high-performance areas
of the search space.

The convergence curves of the methods for some of the composite test functions are shown
in Figure 5. Figure 5 clearly shows that the BOA-CE algorithm has the fastest convergence on the
composite test functions.

In addition, Table 7 presents the time consumption of all the algorithms to solve the 19 benchmark
functions. From Table 7, it can be seen that the least total time cost is PSO to solve all of the benchmark
functions, followed by CSA, and the BOA-CE is ranked third, which is better than BOA.

The results of three test functions show that the local optima avoidance of the improved method
was enhanced by embedding the cross-entropy method. This global stochastic optimization method
enables the BOA-CE algorithm to achieve a proper balance between exploration and exploitation,
and enhance its global search capability. Furthermore, the new method is particularly outstanding in
solving multimodal function optimization problems.This provides a new method for solving complex
engineering design optimization problems.

4.4. Analysis of the Hybrid BOA-CE Algorithm

The main reasons for the excellent performance of the proposed BOA-CE algorithm in solving
global optimization problems may be stated as follows:

• The BOA, which mimics the food foraging behavior of butterflies in nature, has the advantage
of a fast convergence rate. Based on co-updating, the BOA-CE uses the excellent individuals
obtained by the BOA operator to update the CE operator’s probability parameters during the
iterative process, which speeds up the convergence rate of the CE operator.

• The CE method is a global stochastic optimization method based on statistical model, and has
the advantages of randomness, adaptability, and robustness, which bring a good population
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diversity to the BOA operator so that it can effectively avoid falling into a local optimum and
improve its global search capability.

• The BOA-CE algorithm employs a co-evolutionary technique to co-update the BOA operator’s
population and the CE operator’s probability parameters. This enables the improved method
to obtain an appropriate balance between exploration and exploitation and have more superior
performance in terms of exploitation, exploration, and local optima avoidance when solving
complex optimization problems.
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Figure 5. Convergence of algorithms when applied to some composite benchmark functions.

Table 7. Time consumption of BOA-CE solving 19 benchmark functions.

Fun. GA PSO BA GWO CSA SSA BOA BOA-CE

F1 8.96 0.20 0.33 0.55 0.10 0.66 0.46 0.41
F2 8.80 0.21 0.35 0.57 0.11 0.43 0.49 0.42
F3 10.75 0.76 2.52 1.13 2.02 0.56 1.61 1.15
F4 8.44 0.20 0.41 0.55 0.14 0.38 0.46 0.40
F5 9.11 0.27 0.59 0.62 0.29 0.45 0.59 0.51
F6 8.57 0.20 0.34 0.55 0.10 0.38 0.45 0.40
F7 9.29 0.54 0.91 1.14 0.58 0.52 0.84 0.90
F8 8.72 0.31 0.87 0.65 0.19 0.44 0.68 0.62
F9 8.81 0.26 0.41 0.57 0.15 0.40 0.58 0.48
F10 8.66 0.26 0.43 0.59 0.17 0.41 0.55 0.45
F11 8.97 0.31 0.69 0.64 0.34 0.47 0.66 0.54
F12 10.14 1.17 1.62 1.52 1.16 0.91 2.45 1.67
F13 10.10 1.17 1.62 1.52 1.17 0.91 2.46 1.66
F14 264.89 249.55 256.03 304.78 260.24 266.09 263.94 265.80
F15 261.13 232.07 261.98 300.36 258.01 255.73 263.67 259.32
F16 259.28 210.24 269.61 250.40 263.24 258.70 259.05 252.60
F17 313.15 212.06 287.05 273.28 282.19 283.91 286.06 282.38
F18 293.31 262.41 289.38 272.57 286.17 286.81 288.63 286.88
F19 287.42 172.65 278.74 288.92 282.58 297.25 291.06 284.31

Total 1798.50 1344.82 1653.88 1700.91 1638.95 1655.41 1664.70 1640.89
Ranking 8 1 5 7 2 6 4 3
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5. Using the BOA-CE Algorithm for Classical Engineering Design Problems

In this section, the BOA-CE algorithm was tested on three classical constrained engineering design
problems: a tension/compression spring, a welded beam, and a pressure vessel [9,15,19,20,28,31,47–52].
Constraint handling is a challenging task for a method when solving these problems. Penalty functions
are divided into different types: static, dynamic, annealing, adaptive, co-evolutionary, and death
penalty [47]. For the sake of simplicity, we equipped the BOA-CE algorithm with a death penalty
function to handle constraints. Table 8 shows the BOA-CE parameters chosen to solve these design
problems, where N is the population sizes of the BOA and CE operator, and Itermax represents the
maximum number of iterations.

Table 8. Parameters of the BOA-CE algorithm for solving design problems.

Design Problem BOA Operator CE Operator

N Itermax N Itermax

Tension/compression spring 100 50 100 50
Welded beam 100 100 100 50

Pressure vessel 100 100 100 50

5.1. Tension/Compression Spring Design

The objective of this problem is to minimize the weight of the tension/compression spring
shown in Figure 6. It contains three design variables: the wire diameter (d), mean coil diameter
(D), and number of active coils (N), which are subject to one linear and three nonlinear inequality
constraints on shear stress, surge frequency, and deflection. The optimization problem is formulated
as follows:

min f (x) = (x3 + 2)x2x2
1, (14)

subject to

g1(x) = 1−
x3

2x3

71785x4
1
≤ 0, (15)

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1
5108x2

1
− 1 ≤ 0, (16)

g3(x) = 1− 140.45x1

x2
2x3

≤ 0, (17)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0, (18)

where 0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, and 2.00 ≤ x3 ≤ 15.00.

Figure 6. The tension/compression spring design problem.

This problem has been popular among researchers and has been optimized using various
meta-heuristic algorithms. To solve this problem, Coello employed GA [48], He and Wang employed
PSO [49], Gandomi et al. used BA [50], Mirjalili employed GWO [15] and SSA [20], Lee and Geem [51]
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used HS, and Askarzadeh [19] used CSA. The best weight values are highlighted in bold. Table 9
shows a comparison of the results obtained using the BOA-CE algorithm and those obtained using the
other algorithms. It can be seen that the BOA-CE and CSA algorithms find a design with the minimum
weight for this problem and outperform all other algorithms.

Table 9. A comparison of results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum Weight
d D N

GA [48] 0.051480 0.351661 11.632201 0.0127048
PSO [49] 0.051728 0.357644 11.244543 0.012675
BA [50] 0.051690 0.356730 11.288500 0.012670

GWO [15] 0.051690 0.356737 11.288850 0.012666
HS [51] 0.051154 0.349871 12.076432 0.012671

CSA [19] 0.051689 0.356717 11.289012 0.012665
SSA [20] 0.051207 0.345215 12.004032 0.012676
BOA-CE 0.051618 0.355004 11.390144 0.012665

5.2. Welded Beam Design

The objective of this problem is to minimize the fabrication cost of the welded beam shown
in Figure 7. It contains four design variables: the thickness of the weld (h), length of the clamped bar
(l), height of the bar (t), and thickness of the bar (b), which are subject to two linear and five nonlinear
inequality constraints on shear stress, bending stress in the beam, buckling load, and end deflection of
the beam. The optimization problem can be stated as follows:

min f (x) = 1.1047x2
1x2 + 0.04811x3x4(14.0 + x2), (19)

subject to
g1(x) = τ(x)− τmax ≤ 0, (20)

g2(x) = σ(x)− σmax ≤ 0, (21)

g3(x) = δ(x)− δmax ≤ 0, (22)

g4(x) = x1 − x4 ≤ 0, (23)

g5(x) = P− Pc(x) ≤ 0, (24)

g6(x) = 0.125− x1 ≤ 0, (25)

g7(x) = 1.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0, (26)

where τ(x) =
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′)2, τ′ = P√
2x1x2

, τ′′ = MR
J , M = P(L + x2

2 ), R =√
x2

2
4 + ( x1+x3

2 )2, J = 2{
√

2x1x2[
x2

2
4 + ( x1+x3

2 )2]}, σ(x) = 6PL
x4x2

3
, δ(x) = 6PL3

Ex3
3x4

, Pc(x) =
4.013E

√
x2

3x6
4

36
L2 (1−

x3
2L

√
E

4G ), P = 6000 lb, L = 14 in, σmax = 0.25 in, E = 30× 106 psi, G = 12× 106 psi, τmax = 30,000 psi,
0.1 ≤ x1, x4 ≤ 2, and 0.1 ≤ x2, x3 ≤ 10.

The welded beam design problem has been tackled using many meta-heuristic algorithms, such as
GA [48], PSO [49], BA [50], GWO [15], HS [51], WOA [18], and CSA [19]. The optimization results
using the BOA-CE algorithm are compared with those from the literature in Table 10. The minimum
cost is highlighted in bold. The table shows that BOA-CE outperforms all other algorithms except
CSA, with only a slight difference in its result.
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Figure 7. The welded beam design problem.

Table 10. A comparison of results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost
h l t b

GA [48] 0.205986 3.471328 9.020224 0.206480 1.728226
PSO [49] 0.202369 3.544214 9.048210 0.205723 1.731485
BA [50] 0.2015 3.562 9.0414 0.2057 1.7312

GWO [15] 0.205676 3.478377 9.03681 0.205778 1.72624
HS [51] 0.2442 6.2231 8.2915 0.2443 2.3807

WOA [18] 0.205396 3.484293 9.037426 0.206276 1 .730499
CSA [19] 0.205730 3.470489 9.036624 0.205730 1.724852
BOA-CE 0.205730 3.470481 9.036611 0.205730 1.724854

5.3. Pressure Vessel Design

The objective of this problem is to minimize the total cost of a pressure vessel considering the
cost of material, forming and welding shown in Figure 8. There are two discrete and two continuous
design variables: thickness of the shell (Ts), thickness of the head (Th), inner radius (R) and length of
the cylindrical section of the vessel (L), not including the head, which are subjected to three linear
and one nonlinear inequality constraints. The thicknesses of the variables are integer multiples of
0.0625 inches. This optimization problem can be mathematically formulated as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3, (27)

subject to
g1(x) = −x1 + 0.0193x3 ≤ 0, (28)

g2(x) = −x3 + 0.00954x4 ≤ 0, (29)

g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0, (30)

g4(x) = x4 − 240 ≤ 0, (31)

where 0 < x1, x2 ≤ 99, 0 < x3, x4 ≤ 200.
In the past, this problem is solved by GA [48], PSO [49], BA [50], GWO [15], HS [51], WOA [18],

and DE [52]. Table 11 shows optimization results of BOA-CE are compared with those found by
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other methods. It can be seen that BOA-CE and BA outperform all other algorithms except GWO.
However the value of Th obtained by GWO is not an integer multiple of 0.0625 inches and thus does
not satisfy the constraint.

Figure 8. The tension/compression spring design problem.

Table 11. A comparison of results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost
Ts Th R L

GA [48] 0.8125 0.4375 42.097398 176.654050 6059.9463
PSO [49] 0.8125 0.4375 42.091266 176.746500 6061.0777
BA [50] 0.8125 0.4375 42.0984456 176.636596 6059.7143

GWO [15] 0.8125 0.4345 42.089181 176.758731 6051.5639
HS [ [51] 1.1250 0.6250 58.2789 43.7549 7198.433

WOA [18] 0.8125 0.4375 42.0982699 176.638998 6059.7410
DE [52] 0 .8125 0.4375 42.098411 176.63769 6059 .7341

BOA-CE 0.8125 0.4375 42.0984456 176.6365958 6059.7143

6. Conclusions

In order to improve the global search ability of the BOA, an improved BOA algorithm,
named BOA-CE, was constructed by embedding the CE method into the BOA using a co-evolutionary
technique. A total of 19 test functions were used to evaluate the performance of the new method in
terms of its exploration, exploitation, local optima avoidance, and convergence rate. The results of
the test functions demonstrated that the proposed algorithm can effectively avoid falling into a local
optima and has excellent local and global search capacity. This is mainly due to the co-evolutionary
technique, which enables the new method to obtain an appropriate balance between exploration
and exploitation and has more superior performance when solving complex function optimization
problems. Furthermore, the paper also considered the solving of three classical engineering
problems using the hybrid algorithm. The comparative results show that the BOA-CE algorithm
provides very competitive results when solving real problems with unknown search spaces. In future
research, a discrete version of the BOA-CE algorithm will be constructed to solve combinatorial
optimization problems.
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Appendix A

See Table A1.

Table A1. Mathematical formulation of the primitive functions in Table 3.

Name Formulation

Sphere f (x) = ∑D
i=1 x2

i

Ackley f (x) = −20 exp (−0.2
√

1
D ∑D

i=1 x2
i )− exp ( 1

D ∑D
i=1 cos (2πxi)) + 20 + e

Griewank f (x) = 1
4000 ∑D

i=1 x2
i −∏D

i=1 cos ( xi√
i
) + 1

Weierstrass f (x) = ∑D
i=1(∑

kmax
k=0 [a

k cos(2πbk(xi + 0.5))])− D ∑kmax
k=0 [a

k cos(2πbk · 0.5)], a = 0.5, b = 3, kmax = 20
Rastrigin f (x) = ∑D−1

i=1 [x2
i − 10 cos (2πxi) + 10]

D: dimensions.
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