Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observations
2.2. Methods
2.2.1. Turbulence from VMP-250
2.2.2. Fine-Scale Parameterization of Turbulence
3. Results
3.1. Water Mass Characteristics of the Studied Eddy and Its Origin
3.2. Turbulence of the Microstructure Measurement
3.3. Fine-Scale Parameterization of Turbulence under the Influence of a Mesoscale Eddy
4. Discussion
4.1. Potential Mechanism for Suppressed Mixing within the Eddy in the Thermocline
4.2. Relationship between the Fine-Scale Parameterization Results and Wave–Mean Flow Interactions
4.3. Scaling Thermocline Mixing with the Richardson Number
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wunsch, C. Where do ocean eddy heat fluxes matter? J. Geophys. Res. 1999, 104, 13235–13250. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr. 2005, 35, 458–473. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface DB chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, D.J.; Anderson, L.A.; Bates, N.R.; Bibby, T.; Buesseler, K.O.; Carlson, C.A.; Davis, C.S.; Ewart, C.; Falkowski, P.G. Eddy/wind interactions stimulate extraordinary mid-ocean plankton bloom. Science 2007, 316, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Shang, C.; Mao, H.; Qiu, C.; Liang, C.; Yu, L.; Yu, J.; Shang, X. Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea. Acta Oceanol. Sin. 2020, 39, 69–81. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.; Chang, P.; Wu, D.; Wan, X. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep. 2016, 6, 24349. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Liang, X.; Dong, J.; Tian, J. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr. 2017, 47, 895–907. [Google Scholar] [CrossRef]
- Liu, Z.; Lian, Q.; Zhang, F.; Wang, L.; Li, M.; Bai, X.; Wang, J.; Wang, F. Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophys. Res. Lett. 2017, 44, 10530–10539. [Google Scholar] [CrossRef]
- Cyriac, A.; Phillips, H.E.; Bindoff, N.L.; Mao, H.; Feng, M. Observational estimates of turbulent mixing in the southeast Indian Ocean. J. Phys. Oceanogr. 2021, 51, 2103–2128. [Google Scholar]
- Polzin, K.L.; Garabato, A.C.N.; Huussen, T.N.; Sloyan, B.M.; Waterman, S. Finescale parameterizations of turbulent dissipation. J. Geophys. Res.-Oceans. 2014, 119, 1383–1419. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.C. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 1989, 94, 9686–9698. [Google Scholar] [CrossRef]
- Gregg, M.C.; Sanford, T.B.; Winkel, D.P. Reduced mixing from the breaking of internal waves in equatorial waters. Nature 2013, 422, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Garabato, A.C.N.; Oliver, K.I.C.; Watson, A.J.; Messias, M.J. Turbulent diapycnal mixing in the Nordic Seas. J. Geophys. Res. 2004, 109, C12010. [Google Scholar] [CrossRef]
- Polzin, K.L.; Toole, J.M.; Schmitt, R.W. Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 1995, 25, 306–328. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.C.; Kunze, E. Shear and strain in Santa Monica Basin. J. Geophys. Res. 1991, 96, 16709–17719. [Google Scholar] [CrossRef]
- Kunze, E.; Sanford, T.B. Abyssal mixing: Where it is not. J. Phys. Oceanogr. 1996, 26, 2286–2296. [Google Scholar] [CrossRef] [Green Version]
- Mauritzen, C.; Polzin, K.L.; McCartney, M.S.; Millard, R.C.; West-Mack, D.E. Evidence in hydrography and density finestructure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J. Geophys. Res. 2002, 107, 3147. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Mertens, C.; Rhein, M. Mixing estimates from a large-scale hydrographic survey in the North Atlantic. Geophys. Res. Lett. 2005, 32, L13605. [Google Scholar] [CrossRef]
- Kunze, E.; Firing, E.; Hummon, J.M.; Chereskin, T.K.; Thurnherr, A.M. Global abyssal mixing from lowered ADCP shear and CTD strain profifiles. J. Phys. Oceanogr. 2006, 36, 1553–1576. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.D.; Garabato, A.C.N.; Stark, J.D.; Hirschi, J.J.-M.; Marotzke, J. The inflfluence of diapycnal mixing on quasi-steady overturning states in the Indian Ocean. J. Phys. Oceanogr. 2007, 27, 2290–2304. [Google Scholar] [CrossRef] [Green Version]
- Fer, I.; Skogseth, R.; Geyer, F. Internal waves and mixing in the marginal ice zone near Yermak Plateau. J. Phys. Oceanogr. 2010, 40, 1613–1630. [Google Scholar] [CrossRef]
- Wu, L.; Jing, Z.; Riser, S.; Visbeck, M. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profifiling flfloats. Nat. Geosci. 2011, 4, 363–366. [Google Scholar] [CrossRef]
- Whalen, C.B.; Talley, L.D.; MacKinnon, J.A. Spatial and temporal variability of global ocean mixing inferred from ARGO profifiles. Geophys. Res. Lett. 2012, 39, L18612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Qiu, B.; Tian, J.; Zhao, W.; Huang, X. Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat. Commun. 2018, 9, 4086. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, L. Low-frequency modulation of turbulent diapycnal mixing by anticyclonic eddies inferred from the HOT time series. J. Phys. Oceanogr. 2013, 43, 824–835. [Google Scholar] [CrossRef]
- Waterman, S.; Polzin, K.L.; Garabato, A.C.N.; Sheen, K.L.; Forryan, A. Suppression of internal wave breaking in the Antarctic circumpolar current near topography. J. Phys. Oceanogr. 2014, 44, 1466–1492. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Shang, X.; Qi, Y.; Chen, Y.; Yu, L. Assessment of fine-scale parameterizations at low latitudes of the North Pacifc. Sci. Rep. 2018, 8, 10281. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Su, J.; Chu, P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 2013, 30, 2121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhao, W.; Tian, J.; Liang, X. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophy. Res.-Oceans. 2013, 118, 6479–6494. [Google Scholar] [CrossRef]
- Alford, M.H.; Peacock, T.; Mackinnon, J.M.; Nash, J.D.; Buijsman, M.C.; Centuroni, L.R.; Chao, S.; Chang, M.; Farmer, D.M.; Gallacher, P.C. The formation and fate of internal waves in the South China Sea. Nature. 2015, 521, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, Z.; Zhao, W.; Zhang, Z.; Zhou, C.; Yang, Q.; Tian, J. An extreme internal solitary wave event observed in the northern South China Sea. Sci. Rep. 2016, 6, 30041. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Mao, H.; Liu, H.; Xie, Q.; Yu, J.; Su, D.; Ouyan, J.; Lian, S. Deformation of a warm eddy in the northern South China Sea. J. Geophys. Rese.-Oceans. 2019, 124, 5551–5564. [Google Scholar] [CrossRef]
- Osborn, T.R. Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 1980, 10, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Qi, Y.; Chen, G.; Liang, C.; Lueck, R.G.; Prairie, B.; Li, H. An expendable microstructure profiler for deep ocean measurements. J. Atmos. Oceanic Technol. 2017, 34, 153–165. [Google Scholar] [CrossRef]
- Lueck, R.G. Calculating the Rate of Dissipation of Turbulent Kinetic Energy. Rockland Scientific International Tech. Note TN-028. 2013. Available online: http://rocklandscientific.com/?wpdmdl51034 (accessed on 20 September 2021).
- Henyey, F.S.; Wright, J.; Flatté, S.M. Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res.-Oceans. 1986, 91, 8487–8495. [Google Scholar] [CrossRef]
- Garrett, C.; Munk, W. Space-time scales of internal waves. Geophys. Fluid Dyn. 1972, 3, 225–264. [Google Scholar] [CrossRef]
- Garrett, C.; Munk, W. Space-time scales of internal waves: A progress report. J. Geophys. Res. 1975, 80, 291–297. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Liang, X.; Tian, J. Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr. 2016, 46, 769–788. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, S.A. The Turbulent Ocean; Cambridge University Press: Cambridge, UK, 2005; p. 485. [Google Scholar]
- Waterhouse, A.F.; MacKinnon, J.A.; Nash, J.D.; Alford, M.H.; Kunze, E.; Simmons, H.L.; Craig, M. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 2014, 44, 1854–1872. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, L.; Tian, J.; Zhao, W. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea. J. Coastal Res. 2014, 30, 192–198. [Google Scholar]
- St. Laurent, L. Turbulent dissipation on the margins of the South China Sea. Geophys. Res. Lett. 2008, 35, L23615. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Q.; Zhao, W. Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr. 2009, 39, 3191–3203. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res. 2004, C04027, 109. [Google Scholar]
- Jan, S.; Chern, C.S.; Wang, J.; Chao, S.Y. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res. 2007, C06019, 112. [Google Scholar]
- Wang, X.; Peng, S.; Liu, Z.; Huang, R.X.; Qian, Y.K.; Li, Y. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J. Phys. Oceanogr. 2016, 46, 107–124. [Google Scholar] [CrossRef]
- Peters, H.; Bokhorst, R. Microstructure observations of turbulent mixing in a partially mixed estuary. Part I: Dissipation rate. J. Phys. Oceanogr. 2000, 30, 1232–1244. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Effificient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Tech. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Lien, R.C.; Tang, T.Y.; Chang, M.H.; D’Asaro, E.A. Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett. 2005, 32, L05615. [Google Scholar] [CrossRef] [Green Version]
- Jan, S.; Lien, R.C.; Ting, C.H. Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr. 2008, 64, 789–802. [Google Scholar] [CrossRef]
- Alford, M.H.; Lien, R.C.; Simmons, H.; Klymak, J.; Ramp, S.; Yang, Y.J.; Tang, D.; Chang, M.H. Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr. 2010, 40, 1338–1355. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Lozovatsky, I. Upper pycnocline turbulence in the northern South China Sea. Chin. Sci. Bull. 2012, 57, 2302–2306. [Google Scholar] [CrossRef] [Green Version]
- Phillips, O.M. The Dynamics of the Upper Ocean; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Scotti, A.; Beardsley, R.; Butman, B. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay. J. Fluid. Mech. 2006, 561, 103–112. [Google Scholar] [CrossRef]
- Lozovatsky, I.D.; Morozov, E.G.; Fernando, H.J.S. Spatial decay of energy density of tidal internal waves. J. Geophys. Res. 2003, 108, 3201. [Google Scholar] [CrossRef]
- Jing, Z.Y.; Fox-Kemper, B.; Cao, H.J.; Zheng, R.X.; Du, Y. Submesoscale Fronts and Their Dynamical Processes Associated with Symmetric Instability in the Northwest Pacific Subtropical Ocean. J. Phys. Oceanogr. 2021, 51, 83–100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Mao, H.; Wang, X.; Yu, L.; Lian, S.; Li, X.; Shang, X. Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea. J. Mar. Sci. Eng. 2021, 9, 1149. https://doi.org/10.3390/jmse9101149
Qi Y, Mao H, Wang X, Yu L, Lian S, Li X, Shang X. Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea. Journal of Marine Science and Engineering. 2021; 9(10):1149. https://doi.org/10.3390/jmse9101149
Chicago/Turabian StyleQi, Yongfeng, Huabin Mao, Xia Wang, Linhui Yu, Shumin Lian, Xianpeng Li, and Xiaodong Shang. 2021. "Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea" Journal of Marine Science and Engineering 9, no. 10: 1149. https://doi.org/10.3390/jmse9101149
APA StyleQi, Y., Mao, H., Wang, X., Yu, L., Lian, S., Li, X., & Shang, X. (2021). Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea. Journal of Marine Science and Engineering, 9(10), 1149. https://doi.org/10.3390/jmse9101149