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Abstract: Direct microstructure observations and fine-scale measurements of an anticyclonic mesoscale
eddy were conducted in the northern South China Sea in July 2020. An important finding was that
suppressed turbulent mixing in the thermocline existed at the center of the eddy, with an averaged
diapycnal diffusivity at least threefold smaller than the peripheral diffusivity. Despite the strong
background shear and significant wave–mean flow interactions, the results indicated that the lack
of internal wave energy in the corresponding neap tide period during measurement of the eddy’s
center was the main reason for the suppressed turbulent mixing in the thermocline. The applicability
of the fine-scale parameterization method in the presence of significant wave–mean flow interactions
in a mesoscale eddy was evaluated. Overprediction via fine-scale parameterization occurred in the
center of the eddy, where the internal waves were inactive; however, the parameterization results
were consistent with microstructure observations along the eddy’s periphery, where active internal
waves existed. This indicates that the strong background shear and wave–mean flow interactions
affected by the mesoscale eddy were not the main contributing factors that affected the applicability
of fine-scale parameterization in the northern South China Sea. Instead, our results showed that the
activity of internal waves is the most important consideration.

Keywords: fine-scale parameterization; mesoscale eddy; mixing; Richardson number; wave–mean
flow interaction

1. Introduction

Oceanic mesoscale eddies, which play an important role in dynamical oceanography
across a range of scales [1,2] and are key transporters of oceanic materials [3–7], are
ubiquitous on a global scale [8]. Mesoscale eddies contain more than 90% of the ocean’s
kinetic energy; they play important roles in ocean energy distribution and the regulation of
ocean mixing processes [7,9–12]. Turbulence microstructure observation is the most direct
and effective method for studying the mixing processes of ocean mesoscale eddies; however,
few microstructure observation datasets are available, which is not conducive to in-depth
analyses of the interaction mechanism between mesoscale eddies and ocean-mixing. The
fine-scale parameterization method is a promising alternative.

Fine-scale parameterization, built on the wave–wave interaction theory [13], facilitates
exploration of the distribution of turbulent mixing in the open ocean [14–17]; hydrographic
data derived by conductivity-temperature-depth (CTD) profilers are much easier to work
with, compared with previous datasets. The use of fine-scale parameterization of turbu-
lent dissipation by internal wave breaking, which consists of predictions regarding the
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turbulent kinetic energy (TKE) dissipation rate from internal wave shear and strain on
wavelengths of tens to hundreds of meters [13], has experienced explosive growth over
the past 20 years [16,18–26]. Fine-scale parameterization is also one of the main methods
used to study ocean mixing variation regulated by mesoscale eddies. Zhang et al. [27]
applied fine-scale parameterization, together with a Richardson number (Ri)-based pa-
rameterization method developed by Liu et al. [11], to study latitude-dependent turbulent
mixing in the west Pacific Ocean. They found that elevated diffusivities exist at 20–22◦N,
because of the anticyclonic eddy’s inertial chimney effect. Jing and Wu [28] used fine-scale
parameterization to study the modulation of turbulent diapycnal mixing by anticyclonic
eddies in the sea surrounding Hawaii; they revealed that enhanced diapycnal mixing
occurs under anticyclonic eddies in the upper 300–600 m, with a mean dissipation rate that
is approximately half the rate present under eddy-free conditions.

However, in some instances, the application of fine-scale parameterization may be
subject to restrictions. Errors in the outcomes of fine-scale parameterization may be caused
by conditions such as nonlocal spectral transports associated with wave breaking, compe-
tition with wave–mean driven spectral transports, boundary conditions short-circuiting
the downscale energy transfer, nonlocal spectral transports associated with resonant in-
teractions, and stress-driven boundary layers [13]. For example, Liu et al. [11] reported
that the diffusivity estimated from fine-scale parameterization considerably deviated from
microstructure observations in the North Pacific’s low-latitude western boundary current
system, where internal wave breaking is weak. Waterman et al. [29] found that overesti-
mates resulting from fine-scale parameterization exist with significant wave–mean flow
interactions. Liang et al. [30] revealed that fine-scale parameterization fails to predict the
turbulence over rough topography; this was attributed to deviation of the internal wave
spectrum from the Garrett–Munk (GM) spectrum.

With respect to mesoscale eddies, which are often accompanied by strong vertical
background shear and eddy-induced significant wave–mean flow interactions, there has
been minimal attention toward the applicability of fine-scale parameterization. Observa-
tional and modeling studies have revealed that the South China Sea, one of the largest
marginal seas in the Pacific Ocean, has abundant strong eddy and internal wave activ-
ities [7,31–35]. Thus, this area serves as an ideal testbed for investigating the fine-scale
parameterization method in the context of significant wave–mean interactions and shear
instability of background flows affected by mesoscale eddies.

In this study, we examined the structural characteristics of high spatial resolution tur-
bulent microstructures, with the aim of revealing the mechanism of the spatial distribution
characteristics of turbulent mixing. By comparing the results obtained through microstruc-
ture observations and fine-scale parameterization, this paper expounds on whether the
fine-scale parameterization method is suitable for background flow shear and wave–mean
flow interactions accompanied by mesoscale eddies. This paper is organized as follows.
Field observations, including the instruments used and their setups, are described in
Section 2. The main results are presented in Section 3, and a detailed discussion and
summary are provided in Section 4.

2. Materials and Methods
2.1. Observations

The observations were carried out in the northern South China Sea between 11 and
14 July 2020. The main objective of the observations was to investigate the mixing pro-
cesses of an anticyclonic eddy. In total, 50 stations were positioned over the study area
(Figure 1). During the observations, one Seabird 9-11 Plus CTD was used to collect fine-
scale temperature and salinity data. The CTD data were processed in accordance with
standard procedures, as recommended by the instrument manufacturer, and the bin was av-
eraged to 2 m resolution. A shipborne broadband acoustic Doppler current profiler (ADCP;
150 kHz; Teledyne RD Instruments, Poway, CA, USA) operated continuously during the
cruise, providing information on the velocity of the water column in the upper layer at
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approximately 400 m. The 8 m bin size was adopted for the shipboard ADCP, and the
sampling interval was set to 1 min. Thus, one ensemble was captured each minute. Mi-
crostructure velocity shear data were obtained using a turbulence microstructure profiler
(VMP-250). The VMP-250 was equipped with a pressure transducer, one temperature sen-
sor, and two shear probes, thereby allowing simultaneous measurements of the pressure,
temperature, and microstructure shear while free descending at a speed of 0.6–0.8 m/s.

Figure 1. Sea level anomaly (SLA) along with the surface geostrophic flow in the South China
Sea during field observations. The SLA data were produced by SSALTO/DUACS and distributed
by AVISO (with support from the Centre National d’Etudes Spatiales). Green dots indicate the
observed locations, where both fine-scale and microstucture measurements were carried out; black
dots indicate the anticyclonic eddy.

During the measurement period, the sea surface wind was recorded by an automatic
weather station that had been mounted on the ship at approximately 15 m above the sea
surface. The wind was southwesterly at <7 m/s during the observation period; thus, the
sea surface wind field had little effect on our observations.

2.2. Methods
2.2.1. Turbulence from VMP-250

The shear probes in the VMP-250 profiler measured high-frequency velocity fluctua-
tions, which were used to calculate the local turbulent dissipation rate. The TKE dissipation
rate was estimated using the following isotropic formula:

ε =
15
2

ν

(
∂u
∂z

)
=

15
2

ν
∫ kmax

0
ψ(k)dk, (1)

where ν is the kinematic molecular viscosity and the overline indicates a spatial mean;
u is either one of the two horizontal velocity components; z is the vertical coordinate;
ψ(k) is the vertical shear spectrum; and k is the vertical wavenumber [36]. The upper
integration limit, kmax, is variable. kmax was calculated using the method recommended by
Shang et al. [37], which applies the smallest values, in that the lowest frequency at which
the shear signal is corrupted by vibrations; the wavenumber of 150 cpm owing to the shear
probe spatial resolution; the cutoff frequency of the used antialiasing filter; an estimation of
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wavenumber using the Lueck’s method [38], which parses 90% of shear variance according
to the Nasmyth spectrum; or the location of minimum value of spectrum determined the
low-order fitting of the spectrum in the log-log space. Diapycnal diffusivity (Osborn, 1980)
is calculated based on the dissipation rate (ε) and stratification, as follows:

κρ = Γ
ε

N2 , (2)

where Γ is the mixing efficiency, which was set to 0.2. The stratification was calculated as
N2 = − g

ρ
∂ρ
∂z , where g is the acceleration caused by gravity.

2.2.2. Fine-Scale Parameterization of Turbulence

In the absence of a turbulent microstructure observation, Gregg–Henyey–Polzin (GHP)
fine-scale parameterization is one of the most widely used methods for assessing ocean
turbulence from the easier obtained CTD data [15,22]. The GHP scaling was first developed
by Henyey et al. [39] and is based on the theory of internal wave–wave interaction. Here,
the GHP parameterization was employed to qualify the diapycnal diffusivities from CTD
observations for a comparison with VMP-250 observations. The GHP is expressed as follows:

κρ = κ0

〈
ξ2

z
〉2

〈ξ2
z〉2GM

h(Rw)j
(

f
N

)
, (3)

h(Rw) =
1

6
√

2
Rw(Rw + 1)√

Rw − 1
, and (4)

j
(

f
N

)
=

f arccosh(N/ f )
f30arccosh(N0/ f30)

, (5)

where
〈
ξ2

z
〉

represents the observed fine-scale internal wave strain variance, and
〈
ξ2

z
〉2

GM is
the strain variance of the GM spectrum [40,41]. Compared with microstructure observa-
tions, κ0 = 0.15 × 10−6 m2/s was found to be most appropriate for this study; this is much
smaller than the values proposed by Kunze et al. [22]. In the GM model, an open-ocean
internal wave-field was assumed at a fixed buoyancy frequency (N0 = 5.2 × 10−3 s−1)
and a latitude of 30◦. The functions N and f are the buoyancy and Coriolis frequencies,
respectively; Rω is the variance ratio of shear/strain, which was set to a mean value of 7, as
suggested by Kunze et al. [22] in the open ocean and used by Yang et al. [42] in the South
China Sea. To quantify the observed strain

〈
ξ2

z
〉
, the CTD profiles were first separated into

segments of half-overlapping 300 m long, beginning from the maximum depth and exclud-
ing the data in the surface mixed layer. The strain was estimated from buoyancy frequency
ξz =

(
N2 − N2

)
/N2, where mean stratification N2 is based on quadratic fits to each

buoyancy frequency segment. Strain variance was obtained as 〈ξ2
z〉 =

∫ max(kz)
min(kz)

S[ξz](kz)dkz.
In order to calculate the strain variance, the minimum integrated wavenumber of 0.042
rad/m was used, which corresponded to the vertical wavelength of λz = 150 m to be the
lower wavenumber; however, this wavenumber may be influenced by strong background
stratification in the pycnocline [22,28]. The maximum integrated wavenumber was set to
0.419 rad/m, corresponding to a vertical wavelength of λz = 15 m. The GM strain variance
was calculated over the same wavenumber band, i.e.,

〈ξ2
z〉2GM =

πE0bj∗
2

∫ max(kz)

min(kz)

k2

(k + k∗)
2 dkz, (6)

where E0 = 6.3 × 10−5 is the dimensionless energy level; b = 1300 m is the scale depth of the
thermocline; j∗ = 3 is the reference mode number; and k∗ = (π j∗N)/(bN0) is the reference
wavenumber.
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3. Results
3.1. Water Mass Characteristics of the Studied Eddy and Its Origin

The vessel sufficiently transited the center of the anticyclonic eddy (Figure 1) to study
the eddy’s structure. The observations were carried out during the summer season in which
the thickness of the surface mixed layer was less than 50 m (Figure 2a,b); this was smaller
than the thickness reported during the winter [10]. In an anticyclonic eddy, the warm water
in the upper layer accumulates in the center; thus, the mixed layer and thermocline increase
in the center of the eddy. The bottom of the thermocline had deepened by approximately
40 m. Here, the surface mixed layer was identified as the depth at which the potential
temperature varied by less than 0.5 ◦C, and the thermocline was calculated as the depth at
which the potential density varied by less than 0.03 kg/m3.

Figure 2. (a,b) Observed potential temperature (θ) and salinity (S). Black solid lines indicate the
surface mixed layer and dotted lines indicate the bottom of the thermocline. (c) θ-S diagram showing
the water mass within the eddy (center region) and outside of the eddy (periphery region). θ-S
diagrams depict the Kuroshio Current and the north South China Sea. (d) Sea surface wind speed
measured by an automatic weather station that was mounted on the ship above the sea surface at
approximately 15 m.

To determine the origin of the studied anticyclonic eddy, historical salinity and tem-
perature data derived from the Argo Data Center for the Kuroshio Current in the northern
South China Sea (17◦–20◦ N, 114◦–117◦ E) and the Pacific (19◦–22◦ N, 121◦–122.5◦ E) were
compared to in situ T/S data (Figure 2c). The historical profiles of the northern South
China Sea and the Kuroshio Current were derived by averaging 2443 data profiles and
654 data profiles, respectively. A comparison of the water mass characteristics from within
the eddy and outside of the eddy, as well as historical data from the northern South China
Sea and Kuroshio Current, revealed a notable feature—the upper layer of water within the
eddy did not significantly differ from the upper layer of water outside of the eddy (both to
the left and right of the eddy) or from the upper layer of water from the northern South
China Sea. This indicates that the studied anticyclonic eddy originated in the northern
South China Sea. In this study, the “center” of the eddy was defined as the area satisfying
the criteria proposed by Chelton et al. [8]. The area outside of the “center” was designated
as the periphery region. Assessment of its moving path revealed that the study anticyclonic
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eddy appeared at a location 100 km southwest before moving slowly to the observation
position (data not shown); there were no significant differences in the in situ plots within
and outside of the eddy (Figure 2c).

In the mixed layer, the salinity data showed active sub-mesoscale eddies, with a spatial
scale of approximately 10 km in the periphery (Figure 2b). We will elaborate on this in
another study. Here, our focus was the mixing process in the thermocline.

3.2. Turbulence of the Microstructure Measurement

In open oceans worldwide, turbulence is typically enhanced in the surface mixed
layer because of wave breaking, surface wind stirring, and positive buoyancy fluxes in
the surface, even in the presence of calm weather conditions. It was particularly calm,
with wind speed at 15 m above the sea surface less than 7 m/s during the observation
(Figure 2d). This is clearly reflected by the microstructure observed turbulent dissipation
rate in the surface mixed layer; notably, the strong TKE dissipation rate was confined to
a depth within 10 m from the sea surface. Thus, this study concentrates on the spatial
variation of turbulent mixing in the thermocline, in which the dissipation rate and the
diffusivity of the center location were compared with those parameters along the periphery
of the eddy.

In the thermocline, the stable density stratification suppresses the turbulence; thus, it
is generally weaker than the turbulence in the mixed layer. In this study area, the vertical
temperature gradient controlled the stratification (Figure 2a). The vertical salinity gradient
produces negative and positive contributions below and above the maximum salinity,
respectively (Figure 2b).

The observed turbulent dissipation rates and diffusivities across the section below
the surface mixed layer are shown in Figure 3. To facilitate understanding of the observed
mixing, flows in latitudinal (Figure 3a) and stratification (Figure 3e) at the transect are dis-
played, along with estimates of the shear squared (Figure 3c) and the gradient Richardson
number (Ri = N2/S2, where S2 is the magnitude of the shear squared; Figure 3b). The zonal
velocity measured by the shipborne ADCP displayed obvious eddy structure character-
istics, with northward flow to the left side and southward flow to the right side of the
anticyclonic eddy (Figure 3a). Based on the velocity data, the derived shear squared value
and Ri were used to resolve the spatial variation characteristics. A clear relationship was
evident between the enhanced turbulence and low Ri (Figure 3b,d,f). From these results,
we concluded that the general features of flow stability was reflected by the estimated Ri in
the study; moreover, the shipboard ADCP measured currents can be referred to during
analysis of the observed characteristics of turbulence and mixing.

In terms of thermoclines, it is evident from Figure 3d,f that turbulent dissipation and
mixing were both weaker at the center than in the peripheral area. The TKE dissipation
rate ε mostly comprised O(10−9) W/kg, and the diapycnal diffusivity κρ mostly comprised
O(10−5) m2/s, which are the mean values of thermocline turbulence and mixing in oceans
worldwide [43,44]. To more clearly show the characteristics of the turbulence spatial
patterns, all variables in Figure 3 display the mean variation of the thermocline with
longitude. Figure 4d shows that the smallest ε at the center was 6 × 10−10 W/kg, while
the largest ε at the periphery of the eddy reached 1 × 10−8 W/kg. Accordingly, the
smallest averaged κρ at the center was 2 × 10−6 m2/s, while the largest κρ at the edge was
approximately two orders of magnitude larger. On average, the ε values at the center and in
the periphery were 1.3× 10−9 W/kg and 3× 10−9 W/kg, respectively. The mean κρ values
were 6 × 10−6 m2/s at the center and 2 × 10−5 m2/s along the periphery. Similar patterns
with elevated mixing at the periphery of the mesoscale eddy were found in the surface
mixed layer [10]. In this study, the elevated mixing in the thermocline at the periphery of
the eddy is shown.
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Figure 3. Measured variability along the transect. (a–f) The shipborne acoustic Doppler current
profiler (ADCP) measured meridional velocity (v), the inverse gradient Richardson number (Ri−1),
the shear squared (S2), the TKE dissipation rate (ε), the squared buoyancy frequency (N2), and the
diapycnal diffusivity (κρ), respectively. Solid and dashed lines show bottom of mixed layer and
thermocline, respectively.

The suppression of turbulence and mixing in the thermocline at the center is also
reflected in the distribution of Ri, which is exhibited in terms of log10(Ri−1/4) in Figure 3b
and the mean Ri in Figure 4b. Here, the critical value of Ri, 0.25, is used to quantify the
shear instability of water [43], of which the log10(Ri−1/4) relates to 0. Overall, Ri was much
larger than 0.25 in the thermocline at the center, usually by at least one order of magnitude;
however, it decreased sharply in the periphery of the eddy, particularly along its east edge
(Figure 3b), because of strong eddy-induced velocity shear (Figure 3c). This feature is
displayed more clearly in the Ri and averaged squared shear (Figure 4b,c), which exhibited
stronger shear and smaller Ri along the edge. There was an apparent trend whereby both ε
and κρ varied inversely with Ri (Figure 4b,d,f).

3.3. Fine-Scale Parameterization of Turbulence under the Influence of a Mesoscale Eddy

Considering that microstructure measurements are generally scarce and difficult to
obtain, fine-scale parameterization of the turbulence is the common approach used to
study the mixing process of mesoscale eddies. Using the fine-scale parameterization
method, studies have reported several-fold elevations of diffusivity within the anticyclonic
eddy [12,45]. However, this contrasts with the results of our microstructure measurements,
which indicated weak mixing at the center of the eddy. To understand the potential
discrepancy, while verifying the applicability of the GHP parameterization scheme in the
context of shear instability and strong wave–mean interaction, comparisons between the
measurements from microstructure and estimates from fine-scale parameterization for the
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averaged diapycnal diffusivity (κρ GHP) in the thermocline at all of our observation sites
were analyzed.

Figure 4. Averaged variability of the thermocline. (a–f) The shipborne acoustic Doppler current
profiler (ADCP) measured meridional velocity (v), the inverse gradient Richardson number (Ri−1),
the shear squared (S2), the TKE dissipation rate (ε), the squared buoyancy frequency (N2), and the
diapycnal diffusivity (κρ), respectively. In (f), the eddy center is marked.

The comparisons are shown in Figure 5. At some sites, the consistency was found
between the two estimates that fall within a factor of 2; however, a considerable proportion
of κρ GHP was generally biased when estimated by fine-scale parameterization, such that
two stations showed overestimation by more than one order of magnitude. There were
differences in the comparisons between GHP parameterization and microstructure observa-
tions of the center and periphery of the eddy. In the periphery region, the ratio of κρ GHP to
κρ vmp was near the 1:1 line, whereas in the center region, the κρ GHP appeared to partially
overestimate κρ vmp. This may explain the discrepancies observed in our comparisons;
however, the overestimation appears to be a robust feature. Thus, fine-scale parameteriza-
tion may be invalid for the within-eddy region, while it is valid along the periphery of the
eddy where shear instability conditions are ubiquitous (Figure 3b).
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Figure 5. Comparison of thermocline-averaged diapycnal diffusivity (κρ) between microstructure
measurements and fine-scale estimates for the for all stations. Red and black dots indicate compar-
isons at the center and along the periphery of the eddy, respectively. Agreements within factors of 2
and 10 are specified by the gray bands. Bars in the figure present the 95% bootstrapped confidence
intervals for the estimates from microstructure measurements.

4. Discussion
4.1. Potential Mechanism for Suppressed Mixing within the Eddy in the Thermocline

Our results have shown suppressed mixing in the thermocline within the anticyclonic
eddy, which conflicts with the findings of previous studies [12,45]. Cyriac et al. [12] reported
a larger dissipation rate and diffusivity within anticyclonic eddy than that in cyclonic eddy
in the Indian Ocean. Yang et al. [45] also revealed that, compared with cyclonic eddy and
background turbulence, elevated diffusivity existed within an anticyclonic eddy in the
South China Sea. That means enhanced turbulence within anticyclonic eddy is recognized
by many scientists. Thus, it is important to reveal why mixing is inhibited in our study.
The South China Sea is a sea area with strong turbulent mixing [46,47]; an important
energy source is the Luzon Strait, where the barotropic tide interacts with the bottom
topography to produce a large number of internal waves [48–50]. These internal waves in
the South China Sea provide an important energy source for turbulent mixing. Therefore,
the intensity of mixing in the northern South China Sea is presumed to be closely related to
the amplitude of the barotropic tide.

Microstructure measurements at different stations were collected at different times;
thus, the measurement time may be one of the factors that affect the variability of ε in the
thermocline. Strong turbulent mixing generally occurs during spring tides, while weak
mixing occurs during neap tides [51]. Thus, it is possible that microstructure measurements
within the eddy were collected during the neap progression. To rule out this possibility,
we obtained barotropic tide data from the global inverse tide model (TPXO; [52]), which
included the time information of spring–neap tides during the observation period. Only the
barotropic tides at 18.5◦ N and 115◦ E were extracted, because the bias in the arrival of the
spring–neap tides in different locations of the South China Sea is small (≤3 h). Because the
amplitude of the barotropic tide in the northern South China Sea is mainly affected by the
diurnal tide, only the amplitudes of K1 and O1 were considered. The 14-day spring–neap
cycles were adequately represented in the extracted barotropic tide data (Figure 6a). The
microstructure measurements were collected during the neap tide period. A comparison
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of averaged ε and κρ in the thermocline with the extracted tides suggests that suppressed
turbulent mixing in the study was closely related to the measurement period, such that the
lower amplitude of the barotropic tide provided less energy for turbulent mixing.

Figure 6. (a) Time series of the barotropic tidal velocity (ubt) predicted from TPXO 7.1 [52] with the
station symbols overlain. (b,c) The time variations in the mean dissipation rate and diffusivity in
the thermocline.

The predominant propagation and degeneration of the internal wave from the LS
region is the main known source of internal waves in the northern South China Sea [53–55].
The dissipation rate reportedly has a linear relationship with the available potential energy
(APE) of the internal wave [56]. In our study, strong background shear and shear instability
were found at the periphery of the eddy. It remains unknown whether the strong shear
absorbs the energy of the mesoscale eddy, effectively destroying the abovementioned
linear relationship.

To solve this problem, we examined the APE of the internal wave per unit mass,
PIW = 1/2η2

th
〈

N2
th
〉
. Although the APE calculation is based on the linear theory of internal

waves [57], it has been successfully applied in many nonlinear internal wave studies [58].
The wave displacements η2

th were calculated as the root mean square of the density distur-
bances ρ′(z) = ρ′(z)− ρ̃(z) divided by the mean density gradients in selected layers of the
pycnocline [59]. Here, ρ̃(z) is the low-pass density profile filtered with a cutoff wavelength
of 40 m [56]. Figure 7a shows the change in observed PIW with longitude. PIW was weak
at the center of the eddy and increased towards the periphery. This change in the trend
is consistent with spatial changes in the dissipation rate and diffusivity (Figure 4d,f), as
well as the change in the internal tide amplitude (Figure 6a). Thus, there is an approximate
linear relationship between PIW and the averaged ε in the thermocline, indicating that the
breaking of internal waves directly provides an energy source for dissipation at both the
periphery and center of the study mesoscale eddy.
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Figure 7. (a) Spatial variation in the available potential energy (APE) of internal waves (PIW) in the thermocline.
(b) Averaged dissipation rate in the thermocline vs. PIW. Black dashed line in (b) indicates linear regression.

In the ocean, the sub-mesoscale dynamic process is an important bridge between
the mesoscale eddy and turbulence. Elevated mixing in the surface mixed layer at the
periphery of the eddy is usually found and supplied by sub-mesoscale eddies [10], which
develop from the baroclinic instability of the mixed layer [60]. However, it is difficult to
observe the sub-mesoscale eddy in the thermocline. The activity of the sub-mesoscale eddy
can be identified by analyzing the horizontal wavenumber spectrum of velocity (spectrum
slope using a scale rate of −2) and the Rossby number [Ro~O(1)]. In this study, the slope of
the horizontal wavenumber spectrum of velocities in the thermocline was approximately
−3, and the Rossby number was much smaller than 1 in both the periphery and center of
the eddy (data not shown). Our findings indicated that the elevated turbulent mixing in
the thermocline in the periphery of the eddy was not furnished by the sub-mesoscale eddy.

4.2. Relationship between the Fine-Scale Parameterization Results and Wave–Mean
Flow Interactions

As mentioned in the Introduction, the use of fine-scale parameterization under specific
conditions may cause some deviation. In this study, the GHP results tended to overestimate
the microstructure measurements in the center of the eddy (Figure 5). That overestimation
is most likely related to specific background flow characteristics; thus, the wave–mean flow
interaction plays a significant role in fine-scale overprediction.

The Froude number, Fr = Uz/N, was calculated to explore the relationship between
the fine-scale parameterization results and wave–mean flow interactions. In the spectral
energy transmission in vertical wavenumber space, Fr can weigh the wave–mean flow
interactions relative to the nonlinear wave–wave interactions [29]. Here, Uz is the vertical
shear estimated from the shipborne ADCP data that were smoothed by a sliding polynomial
fit on a vertical scale of 100 m. The overprediction of fine-scale parameterization shows
a systematic correlation with the value of Fr in the thermocline, comprising a larger Fr
with larger overprediction (Figure 8a). The tendency for fine-scale overprediction to be
associated with Fr of O(0.1) and greater, and the positive linear trend of the κρ ratio, suggest
that wave–mean flow interactions play a supporting role in the observed overpredition
of fine-scale parameterization in the center region of this study. Although the Fr in the
center of the eddy is in the order of 0.1, this order of magnitude is sufficiently large for
wave–mean flow interactions to play a significant role in the wave dynamics [13,29].
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Figure 8. (a) Ratio of fine-scale parameterization estimated diffusivity (κρ GHP) to VMP-250 observed diffusivity (κρ vmp) vs.
the Froude number (Fr). (b) Spatial-variation of Fr.

Notably, Fr was larger along the periphery of the eddy than in the center (Figure 8b),
indicating that wave–mean interactions were more significant. However, a positive correla-
tion linear trend of the κρ ratio with respect to Fr could not be resolved in the periphery
region. Therefore, it is reasonable to infer that, although the wave–mean flow interaction is
strong, the GHP parameterization method retains the ability to calculate the correct diffu-
sivity in the region where the internal wave is sufficiently active, similar to the scenario
involving the periphery region in our measurements. When the internal wave is inactive,
the influence of wave–mean flow interactions on the GHP parameterization method will
be highlighted, similar to the center region in the present study. The fundamental reason
for these findings is that the GHP method was developed based on the theoretical basis of
the wave–wave interaction [22].

4.3. Scaling Thermocline Mixing with the Richardson Number

The results of the present study suggest that weak background mixing in the center of
the anticyclonic eddy is preserved by the reduced internal waves breaking with weak APE
during the neap tide period (Figures 6 and 7). The mixing may elevate locally because of
strong shear; this is presumably associated with the prominent dynamic features of the
eddy and cannot be ignored. As mentioned earlier, a clear relationship was established
between the enhanced (inhibited) turbulence and low (high) Ri; this was demonstrated in
Figure 4b,d,f. According to Liu et al. [11], who modeled the observed diffusivity κρ with Ri:

κρ = κ0 + κm

(
1 +

Ri
Ric

)−1
, (7)

where Ric = 0.25 is the critical Ri value due to shear instability, κ0 is the background
diffusivity, and κm is the maximum diffusivity corresponding to a vanishing Ri. Both κ0
and κm are determined from the data. Although the original data were scattered, the bin-
averaged data showed an obvious decreasing tendency of κρ with increasing Ri (Figure 9).
Application of a nonlinear least squares regression to the bin-averaged data provided
values of κ0 = 5.1 × 10−6 m2/s and κm = 1.4 × 10−4 m2/s. This κ0 was larger than the value
estimated by Liu et al. [11], who derived κ0 = 2.1 × 10−6 m2/s in the low latitudes of the
Pacific Ocean. It is not difficult to understand, because our observations were performed at
a higher latitude. The κm in this study was slightly smaller. The 95% confidence intervals
of the model predictions are also shown in Figure 9 as red dots. Here, a majority of the
bin-averaged data fall within the confidence intervals, meaning that the above analytical
model adequately approximated the observations. Furthermore, the estimated value of κ0
was similar to the observed background diffusivity from VMP-250 (Figure 4).
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Figure 9. Microstructure observed diffusivity (κρ) versus Ri for all estimates in the thermocline,
with original (gray symbols) and bin-averaged samples (black symbols). Red solid line shows the
nonlinear least squares regression to the bin-averaged data, with 95% confidence intervals indicated
by red dotted lines.

5. Conclusions

This study reports on turbulence microstructure measurements of turbulent mixing
across an anticyclonic eddy in the northern South China Sea. Thermocline turbulence and
mixing were found to be weak at the center of the eddy, with a mean TKE dissipation
rate of 1.3 × 10−9 W/kg and a diapycnal diffusivity of 6 × 10−6 m2/s. Elevated mixing
was found at the periphery, with a diffusivity threefold larger than the diffusivity at the
center. The spatial variation of the mixing was positive, consistent with the change in the
APE of the internal wave and the change in the background shear. From these findings,
we conclude that the lack of internal wave energy in the corresponding neap tide period
during the center eddy measurements is the main reason for the spatial structure of mixing
in the thermocline.

Under the influence of an anticyclonic eddy, Fr (the ratio of the background shear
to the buoyancy frequency) indicated that the wave–mean flow interactions both in the
center and in the periphery of the eddy have significant roles in the wave dynamics.
These significant wave–mean flow interactions may lead to error in the outcomes of fine-
scale parameterizations. In the thermocline, overprediction of fine-scale parameterization
outcomes existed at the eddy center when and where the internal waves were inactive;
however, the results were consistent with microstructure observations along the eddy’s
periphery in the vicinity of active internal waves. Thus, the strong background shear and
wave–mean flow interactions affected by the mesoscale eddy were not responsible for
effects on the applicability of fine-scale parameterization. Instead, the activity of the internal
wave was the most important factor. Concerning the error of fine-scale parameterization,
the Richardson number-based model proposed by Liu et al. [11] is another alternative for
parameterizing the thermocline turbulence in the center of the eddy.
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