Power Prediction of Wind Farms via a Simplified Actuator Disk Model
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equations
2.2. Actuator Disk Model
2.3. Body Force Distribution
3. Numerical Method
3.1. Solution Process
3.2. Computational Domain
3.3. Boundary Conditions
3.4. Grid Dependence
4. Numerical Results
4.1. Validation of Horns Rev Wind Farm
4.2. Long-Term Power Prediction
4.3. Description of Onshore Wind Farms
4.4. Yearly Capacity Factor
4.5. Performance Assessment of the Proposed Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bulletin Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Mahoney, W.P.; Parks, K.; Wiener, G.; Liu, Y.B.; Myers, W.L.; Sun, J.; Monache, L.D.; Hopson, T.; Johnson, D.; Haupt, S.E. A Wind Power Forecasting System to Optimize Grid Integration. IEEE Trans. Sustain. Energy 2012, 3, 670–682. [Google Scholar] [CrossRef]
- Haupt, S.E.; Mahoney, W.P. Taming Wind Power with Better Forecasts. IEEE Trans. Spectr. 2015, 52, 47–52. [Google Scholar] [CrossRef]
- Ainslie, J.F. Calculating the Flow Field in the Wake of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Shen, W.Z. Numerical Modeling of Wind Turbine Wakes. J. Fluids Eng. 2002, 124, 393–399. [Google Scholar] [CrossRef]
- González-Longatt, F.; Wall, P.; Terzija, V. Wake Effect in Wind Farm Performance: Steady-State and Dynamic Behavior. Renew. Energy 2012, 39, 329–338. [Google Scholar] [CrossRef]
- Lin, Y.; Lee, N.Z.; Chau, S.W. Flow-Structure Interaction Modelling of Rotating Wind Turbine with Deformable Rotor Blades. In Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics, Glasgow, UK, 24–26 August 2015. [Google Scholar]
- Chuang, Y.H.; Chau, S.W. Aerodynamic and Aeroacoustic Prediction of Wind Turbine Rotor for a 2MW Horizontal-Axis Design under the Rated Condition. In Proceedings of the 6th International Symposium on Energy Challenges and Mechanics, Inverness, Scotland, 14–18 August 2016. [Google Scholar]
- Yang, C.Y.; Kouh, J.S.; Chau, S.W. Study of Aerodynamic Loads Acting on Wind Turbines under the Typhoon Conditions in Taiwan. In Proceedings of the Advanced Maritime Engineering Conference, Hong Kong, China, 13–14 October 2016. [Google Scholar]
- Choi, N.J.; Nam, S.H.; Jeong, J.H.; Kim, K.C. Numerical Study on the Horizontal Axis Turbines Arrangement in a Wind Farm: Effect of Separation Distance on the Turbine Aerodynamic Power Output. J. Wind Eng. Ind. Aerodyn. 2013, 117, 11–17. [Google Scholar] [CrossRef]
- Troldborg, N. Actuator Line Modeling of Wind Turbine Wakes. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2008. [Google Scholar]
- Sørensen, J.N.; Mikkelsen, R.F.; Henningson, D.S.; Ivanell, S.; Sarmast, S.; Andersen, S.J. Simulation of Wind Turbine Wakes Using the Actuator Line. Tech. Phil. Trans. R. Soc. A 2015, 373, 20140071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzafame, R.; Messina, M. Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory. Renew. Energy 2007, 32, 2291–2305. [Google Scholar] [CrossRef]
- Porte-Agel, F.; Wu, Y.T.; Lu, H.; Conzemius, R.J. Large-eddy Simulation of Atmospheric Boundary Layer Flow through Wind Turbines and Wind Farms. J. Wind Eng. Ind. Aerodyn. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Jha, P.K.; Churchfield, M.J.; Moriarty, P.J.; Schmitz, S. Guidelines for Volume Force Distributions within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids. J. Sol. Energy Eng. 2014, 136, 031003. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Mikkelsen, R.F.; Sørensen, J.N. Actuator Disc Methods Applied to Wind Turbines. Doctoral Dissertation, Technical University of Denmark, Kongens Lyngby, Denmark, 2004. [Google Scholar]
- Lee, K.C.; Chau, S.W. Wind Farm Wake Modeling Using an Actuator Disk Model. In Proceedings of the Advanced Maritime Engineering Conference, 9–12 October 2018. [Google Scholar]
- Crasto, G.; Gravdahl, A.R.; Castellani, F.; Piccioni, E. Wake Modeling with the Actuator Disc Concept. Energy Procedia 2012, 24, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Castellani, F.; Vignaroli, A. An Application of the Actuator Disc Model for Wind Turbine Wakes Calculations. Appl. Energy 2013, 101, 432–440. [Google Scholar] [CrossRef]
- Chau, S.W.; Hsu, K.L. Modeling Steady Axis-Symmetric Thermal Plasma Flow of Air by a Parallelized Magneto-Hydrodynamic Flow Solver. Comput. Fluids 2011, 45, 109–115. [Google Scholar] [CrossRef]
- Stone, H.L. Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM J. Numer. Anal. 1968, 5, 530–558. [Google Scholar] [CrossRef]
- Hsu, S.A.; Meindl, E.A.; Gilhousen, D.B. Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea. J. Appl. Meteorol. 1994, 33, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.T.; Porté-Agel, F. Modeling Turbine Wakes and Power Losses within a Wind Farm Using LES: An Application to the Horns Rev Offshore Wind Farm. Renew. Energy 2015, 75, 945–955. [Google Scholar] [CrossRef]
- Jamil, M.; Parsa, S.; Majidi, M. Wind Power Statistics and an Evaluation of Wind Energy Density. Renew. Energy 1995, 6, 623–628. [Google Scholar] [CrossRef]
- Dekos, G.; Piggot, M.D.; Laizet, S. Development and Validation of the High-Order Finite Difference Wind Farm Simulator, WInc3D. In Proceedings of the Third Conference on Renewable Energies Offshore, Lisbon, Portugal, 8–10 October 2018. [Google Scholar]
0.09 | 1.00 | 1.30 | 1.44 | 1.92 |
Boundary | Type | |||
---|---|---|---|---|
abcd, aefb | Inlet | (Equation (15)) | 0 | 0 |
aehd, bfgc | Slip wall | 0 | ||
cdhg | No-slip wall | 0 | 0 | 0 |
efgh | Outlet |
222° | 85 | 90 | 8 | 8 | 8 | 10 | 10 | 10 | 85090055 |
270° | 81 | 55 | 81055055 | ||||||
312° | 95 | 80 | 95080055 |
222° | 79 | 4 | 5.3 | 5.3 | 5.3 | 10 | 15 | 15 | 11856072 |
270° | 77 | 11556072 | |||||||
312° | 87 | 13056072 |
Wind Farm | Type | ||||||
---|---|---|---|---|---|---|---|
A | Enercon E40-600 | 8 | 0.6 | 40 | 46 | 34.5 | 13 |
B | Enercon E70 | 10 | 2.3 | 71 | 64 | 21.5 | 15 |
C | Vestas V80 | 23 | 2 | 80 | 70 | 16.7 | 14.5 |
Wind Farm | |||
---|---|---|---|
CFE | 0.432 | 0.350 | 0.271 |
CFS | 0.423 | 0.380 | 0.268 |
Error (%) | 2.1 | 8.6 | 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, Y.-C.; Hsu, Y.-C.; Chau, S.-W. Power Prediction of Wind Farms via a Simplified Actuator Disk Model. J. Mar. Sci. Eng. 2020, 8, 610. https://doi.org/10.3390/jmse8080610
Chiang Y-C, Hsu Y-C, Chau S-W. Power Prediction of Wind Farms via a Simplified Actuator Disk Model. Journal of Marine Science and Engineering. 2020; 8(8):610. https://doi.org/10.3390/jmse8080610
Chicago/Turabian StyleChiang, Yen-Cheng, Yu-Cheng Hsu, and Shiu-Wu Chau. 2020. "Power Prediction of Wind Farms via a Simplified Actuator Disk Model" Journal of Marine Science and Engineering 8, no. 8: 610. https://doi.org/10.3390/jmse8080610
APA StyleChiang, Y.-C., Hsu, Y.-C., & Chau, S.-W. (2020). Power Prediction of Wind Farms via a Simplified Actuator Disk Model. Journal of Marine Science and Engineering, 8(8), 610. https://doi.org/10.3390/jmse8080610