# Analysis and Optimization of Atmospheric Drain Tank of Lng Carrier Steam Power Plant

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Feed Water and Steam Condensate System

## 3. Data Collection

## 4. Thermodynamic Analysis

## 5. Energy and Exergy Analysis Results

^{−1}and reaching a ship speed of about 13 knots, the main sea water circulating pumps are stopped and cooling of the main condenser is taken over by the scoop system, which collects sea water according to the ship’s speed.

^{−1}, after which energy losses become lower and are distributed more equally through the upper range of the load range. Exergy flow losses of the atmospheric drain tank have an opposite trend to energy losses and increase even with the increased main propulsion turbine load (Figure 4). Exergy destruction amplitude is about 10 kW at the highest load, which is almost double compared to energy losses. The increment of exergy destruction with increased load is typical for disturbances in the system that may be connected to some equipment, under capacitance or similar construction design failure. The observed shortcoming may be improved by optimizing the respective component flow streams. The moment of decreasing exergy destruction trend at higher loads is at 1.5 min

^{−1}, where extraction of steam from the high-pressure turbine begins. The extracted steam is used for ship services. This moment obviously acts positively on the exergy destruction of the atmospheric drain tank.

## 6. Mathematical Formulation of Atmospheric Drain Tank Optimization Problem

_{i}of polynomial P(x

_{i}), i = 1, …, n is:

**X**and the vector with the coefficients a

_{i}, i = 0, …, k be denoted by a. The solution to (21) and (22) can be found by multiplying system (23) by the inverse of

**X**:

- Contaminated condensate cooler temperature outlet t
_{4}; - Clean condensate cooler temperature outlet t
_{5}; - Distillate temperature t
_{6}.

- Exergy of stream inlet to atmospheric drain tank from fresh water generator ex
_{1}; - Contaminated condensate cooler temperature outlet t
_{4}; - Exergy of stream inlet to atmospheric drain tank from gland steam condenser ex
_{2}; - Exergy of stream inlet to atmospheric drain tank from first-stage feed water heater ex
_{3}; - Mass flow inlet to atmospheric drain tank from m
_{1}to m_{6}are fixed; - Pressure from p
_{1}to p_{6}is fixed.

- Conservation of mass flow:$${\dot{m}}_{1}+{\dot{m}}_{2}+{\dot{m}}_{3}+{\dot{m}}_{4}+{\dot{m}}_{5}+{\dot{m}}_{6}={\dot{m}}_{7}.$$
_{7}is determined by partial temperature ratios of all mass flow participants:$${\dot{m}}_{1}\xb7{t}_{1}+{\dot{m}}_{2}\xb7{t}_{2}+{\dot{m}}_{3}\xb7{t}_{3}+{\dot{m}}_{4}\xb7{t}_{4}+{\dot{m}}_{5}\xb7{t}_{5}+{\dot{m}}_{6}\xb7{t}_{6}={\dot{m}}_{7}\xb7{t}_{7}.$$

- Contaminated condensate cooler temperature outlet:$$30\le {t}_{4}\le 140.$$
- Clean condensate cooler temperature outlet:$$30\le {t}_{5}\le 140.$$
- Distillate water temperature from the tank:$$20\le {t}_{6}\le 40.$$
- Energy efficiency of joining streams to atmospheric drain tank:$$0\le {\eta}_{I}\le 1\text{}\mathrm{or}\text{}0\le \frac{{\dot{m}}_{7}\xb7{h}_{7}}{{\dot{m}}_{1}\xb7{h}_{1}+{\dot{m}}_{2}\xb7{h}_{2}+{\dot{m}}_{3}\xb7{h}_{3}+{\dot{m}}_{4}\xb7{h}_{4}+{\dot{m}}_{5}\xb7{h}_{5}+{\dot{m}}_{6}\xb7{h}_{6}}\le 1.$$

- Constraint precision: 0.000001;
- Convergence: 0.0001;
- Derivatives: forward;
- Bounds on the variables: require;

## 7. Optimization Results

^{−1}at the main propulsion shaft, exergy efficiency increased by 3% to 4%.

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

$\dot{E}$ | energy flow, kW |

${\dot{E}}_{L}$ | energy loss, kW |

$\dot{S}$ | entropy flow rate, kW/K |

${e}_{x}$ | specific exergy, kJ/kg |

$\dot{E}x$ | exergy flow, kW |

$\dot{E}{x}_{d}$ | exergy destruction, kW |

h | enthalpy, kJ/k |

$\dot{m}$ | mass flow rate, kg/s |

$p$ | pressure, Pa |

$\dot{Q}$ | heat flow rate, kW |

$t$ | temperature, °C |

$T$ | temperature, K |

$\dot{W}$ | power, kW |

## Subscript

i | inlet |

k | boundary temperature |

o | outlet |

0 | referent temperature |

## Greek Letter

${\eta}_{I}$ | energy efficiency |

${\eta}_{II}$ | exergy efficiency |

## Abbreviations

BOG | boil-off gas |

HC | hydrocarbon |

HFO | heavy fuel oil |

## Appendix A

**Table A1.**Fresh water generator condensate, gland steam condenser and first-stage heater pressure condensate, temperature and mass data.

Main Turbine Propulsion Shaft Speed | Fresh Water Generator | Gland Steam Condenser | 1st Stage Feed Water Heater | ||||||
---|---|---|---|---|---|---|---|---|---|

n (min^{−1}) | t (°C) | p (MPa) | ṁ [kg/h] | t (°C) | p (MPa) | ṁ (kg/h) | t (°C) | p (MPa) | ṁ (kg/h) |

0.0 | 36.8 | 0.75 | 720 | 98.83 | 0.0973 | 196 | 86.0 | 0.550 | 1578 |

25.6 | 34.3 | 0.75 | 720 | 98.83 | 0.0973 | 417 | 90.0 | 0.549 | 3351 |

34.3 | 33.3 | 0.75 | 720 | 98.83 | 0.0973 | 468 | 92.0 | 0.452 | 3291 |

41.8 | 32.5 | 0.75 | 720 | 98.83 | 0.0973 | 476 | 89.0 | 0.550 | 3391 |

53.5 | 33.3 | 0.75 | 720 | 98.83 | 0.0973 | 410 | 83.0 | 0.549 | 3522 |

56.7 | 78.7 | 0.2 | 2845 | 98.83 | 0.0973 | 410 | 88.0 | 0.549 | 3688 |

61.5 | 78.7 | 0.2 | 3099 | 98.83 | 0.0973 | 410 | 90.0 | 0.548 | 4083 |

62.5 | 78.7 | 0.2 | 3060 | 98.83 | 0.0973 | 410 | 90.0 | 0.551 | 4013 |

63.6 | 78.7 | 0.2 | 3026 | 98.83 | 0.0973 | 410 | 88.0 | 0.548 | 4142 |

65.1 | 78.7 | 0.2 | 3309 | 98.83 | 0.0973 | 410 | 85.0 | 0.547 | 4197 |

66.1 | 78.7 | 0.2 | 3342 | 98.83 | 0.0973 | 410 | 84.0 | 0.546 | 4296 |

67.7 | 78.7 | 0.2 | 3328 | 98.83 | 0.0973 | 410 | 92.0 | 0.546 | 4260 |

68.7 | 78.7 | 0.2 | 3440 | 98.83 | 0.0973 | 410 | 94.0 | 0.082 | 4699 |

69.5 | 78.7 | 0.2 | 3500 | 98.83 | 0.0973 | 410 | 95.0 | 0.085 | 4652 |

70.4 | 78.7 | 0.2 | 3550 | 98.83 | 0.0973 | 410 | 95.5 | 0.087 | 4692 |

71.0 | 78.7 | 0.2 | 3454 | 98.83 | 0.0973 | 410 | 96.0 | 0.088 | 4699 |

73.1 | 78.7 | 0.2 | 3570 | 98.83 | 0.0973 | 410 | 97.8 | 0.094 | 4893 |

74.6 | 78.7 | 0.2 | 3756 | 98.83 | 0.0973 | 410 | 98.7 | 0.097 | 5161 |

76.6 | 78.7 | 0.2 | 3726 | 98.83 | 0.0973 | 410 | 99.6 | 0.100 | 5712 |

78.4 | 78.7 | 0.2 | 3906 | 98.83 | 0.0973 | 410 | 99.8 | 0.101 | 5952 |

79.5 | 78.7 | 0.2 | 3857 | 98.83 | 0.0973 | 410 | 102.0 | 0.110 | 5984 |

80.4 | 78.7 | 0.2 | 3639 | 98.83 | 0.0973 | 410 | 103.0 | 0.114 | 6083 |

81.5 | 78.7 | 0.2 | 3813 | 98.83 | 0.0973 | 410 | 103.0 | 0.114 | 5887 |

82.9 | 78.7 | 0.2 | 3753 | 98.83 | 0.0973 | 410 | 104.7 | 0.120 | 6362 |

83.0 | 78.7 | 0.2 | 3847 | 98.83 | 0.0973 | 410 | 105.0 | 0.121 | 6336 |

**Table A2.**Contaminated condensate cooler, condensate cooler and distillate water, temperature and mass data.

Main Turbine Propulsion Shaft Speed | Contaminated Condensate Cooler Flow | Condensate Cooler Flow | Distillate Water | ||||||
---|---|---|---|---|---|---|---|---|---|

n (min^{−1}) | t (°C) | p (MPa) | ṁ (kg/h) | t (°C) | p (MPa) | ṁ (kg/h) | t (°C) | p (MPa) | ṁ (kg/h) |

0.0 | 70 | 0.55 | 840 | 70 | 0.55 | 1327 | 29 | 0.11 | 561 |

25.6 | 70 | 0.65 | 1610 | 70 | 0.65 | 1607 | 29 | 0.11 | 663 |

34.3 | 70 | 0.65 | 1540 | 70 | 0.65 | 1418 | 29 | 0.11 | 695 |

41.8 | 70 | 0.65 | 1610 | 70 | 0.65 | 1211 | 29 | 0.11 | 653 |

53.5 | 70 | 0.65 | 1610 | 70 | 0.65 | 1294 | 29 | 0.11 | 745 |

56.7 | 70 | 0.65 | 1610 | 70 | 0.65 | 1303 | 29 | 0.11 | 764 |

61.5 | 70 | 0.65 | 1680 | 70 | 0.65 | 1118 | 29 | 0.11 | 793 |

62.5 | 70 | 0.65 | 1610 | 70 | 0.65 | 1425 | 29 | 0.11 | 789 |

63.6 | 70 | 0.65 | 1680 | 70 | 0.65 | 1122 | 29 | 0.11 | 815 |

65.1 | 70 | 0.65 | 1680 | 70 | 0.65 | 1012 | 29 | 0.11 | 822 |

66.1 | 70 | 0.65 | 1680 | 70 | 0.65 | 1128 | 29 | 0.11 | 852 |

67.7 | 70 | 0.65 | 1680 | 70 | 0.65 | 1243 | 29 | 0.11 | 876 |

68.7 | 70 | 0.65 | 1680 | 70 | 0.65 | 1133 | 29 | 0.11 | 865 |

69.5 | 70 | 0.65 | 1680 | 70 | 0.65 | 1249 | 29 | 0.11 | 868 |

70.4 | 70 | 0.65 | 1680 | 70 | 0.65 | 1134 | 29 | 0.11 | 867 |

71.0 | 70 | 0.65 | 1680 | 70 | 0.65 | 1135 | 29 | 0.11 | 861 |

73.1 | 70 | 0.65 | 1680 | 70 | 0.65 | 1021 | 29 | 0.11 | 922 |

74.6 | 70 | 0.65 | 1680 | 70 | 0.65 | 1120 | 29 | 0.11 | 933 |

76.6 | 70 | 0.65 | 1680 | 70 | 0.65 | 1231 | 29 | 0.11 | 939 |

78.4 | 70 | 0.65 | 1680 | 70 | 0.65 | 1122 | 29 | 0.11 | 977 |

79.5 | 70 | 0.65 | 1680 | 70 | 0.65 | 1237 | 29 | 0.11 | 978 |

80.4 | 70 | 0.65 | 1680 | 70 | 0.65 | 1346 | 29 | 0.11 | 1000 |

81.5 | 70 | 0.65 | 1680 | 70 | 0.65 | 358 | 29 | 0.11 | 1002 |

82.9 | 70 | 0.65 | 1610 | 70 | 0.65 | 2350 | 29 | 0.11 | 1022 |

83.0 | 70 | 0.65 | 1610 | 70 | 0.65 | 2244 | 29 | 0.11 | 1032 |

Main Turbine Propulsion Shaft Speed | Atmospheric Drain Tank Joined Streams | ||
---|---|---|---|

n (min^{−1}) | t (°C) | p (MPa) | ṁ (kg/h) |

0.0 | 67 | 0.11 | 5223 |

25.6 | 73 | 0.11 | 8349 |

34.3 | 74 | 0.11 | 8108 |

41.8 | 73 | 0.11 | 8043 |

53.5 | 70 | 0.11 | 8302 |

56.7 | 77 | 0.11 | 9050 |

61.5 | 78 | 0.11 | 10,290 |

62.5 | 78 | 0.11 | 10,448 |

63.6 | 78 | 0.11 | 10,369 |

65.1 | 76 | 0.11 | 10,325 |

66.1 | 76 | 0.11 | 10,566 |

67.7 | 78 | 0.11 | 10,665 |

68.7 | 80 | 0.11 | 11,051 |

69.5 | 80 | 0.11 | 11,113 |

70.4 | 81 | 0.11 | 11,035 |

71.0 | 81 | 0.11 | 11,035 |

73.0 | 82 | 0.11 | 11,171 |

74.6 | 82 | 0.11 | 11,564 |

76.6 | 83 | 0.11 | 12,220 |

78.4 | 84 | 0.11 | 12,393 |

79.5 | 85 | 0.11 | 12,552 |

80.4 | 85 | 0.11 | 12,777 |

81.5 | 86 | 0.11 | 11,597 |

82.9 | 85 | 0.11 | 14,020 |

83.0 | 85 | 0.11 | 13,961 |

**Table A4.**Optimized temperature from contaminated condensate cooler outlet, clean condensate cooler outlet and distillate tank outlet to atmospheric drain tank.

Main Turbine Propulsion Shaft Speed | Contaminated Condensate Cooler Flow | Condensate Cooler Flow | Distillate Water | ||||||
---|---|---|---|---|---|---|---|---|---|

n (min^{−1}) | t (°C) | p (MPa) | ṁ (kg/h) | t (°C) | p (MPa) | ṁ (kg/h) | t (°C) | p (MPa) | ṁ (kg/h) |

0.0 | 84.64 | 0.55 | 840 | 84.64 | 0.55 | 1327 | 40 | 0.11 | 561 |

25.6 | 90.83 | 0.65 | 1610 | 90.83 | 0.65 | 1607 | 40 | 0.11 | 663 |

34.3 | 92.57 | 0.65 | 1540 | 92.57 | 0.65 | 1418 | 40 | 0.11 | 695 |

41.8 | 90.30 | 0.65 | 1610 | 90.30 | 0.65 | 1211 | 40 | 0.11 | 653 |

53.5 | 84.82 | 0.65 | 1610 | 84.82 | 0.65 | 1294 | 40 | 0.11 | 745 |

56.7 | 85.75 | 0.65 | 1610 | 85.75 | 0.65 | 1303 | 40 | 0.11 | 764 |

61.5 | 86.85 | 0.65 | 1680 | 86.85 | 0.65 | 1118 | 40 | 0.11 | 793 |

62.5 | 86.90 | 0.65 | 1610 | 86.90 | 0.65 | 1425 | 40 | 0.11 | 789 |

63.6 | 85.74 | 0.65 | 1680 | 85.74 | 0.65 | 1122 | 40 | 0.11 | 815 |

65.1 | 83.84 | 0.65 | 1680 | 83.84 | 0.65 | 1012 | 40 | 0.11 | 822 |

66.1 | 83.29 | 0.65 | 1680 | 83.29 | 0.65 | 1128 | 40 | 0.11 | 852 |

67.7 | 87.86 | 0.65 | 1680 | 87.86 | 0.65 | 1243 | 40 | 0.11 | 876 |

68.7 | 88.53 | 0.65 | 1680 | 88.53 | 0.65 | 1133 | 40 | 0.11 | 865 |

69.5 | 89.09 | 0.65 | 1680 | 89.09 | 0.65 | 1249 | 40 | 0.11 | 868 |

70.4 | 89.37 | 0.65 | 1680 | 89.37 | 0.65 | 1134 | 40 | 0.11 | 867 |

71.0 | 89.81 | 0.65 | 1680 | 89.81 | 0.65 | 1135 | 40 | 0.11 | 861 |

73.1 | 90.93 | 0.65 | 1680 | 90.93 | 0.65 | 1021 | 40 | 0.11 | 922 |

74.6 | 91.55 | 0.65 | 1680 | 91.55 | 0.65 | 1120 | 40 | 0.11 | 933 |

76.6 | 92.66 | 0.65 | 1680 | 92.66 | 0.65 | 1231 | 40 | 0.11 | 939 |

78.4 | 92.73 | 0.65 | 1680 | 92.73 | 0.65 | 1122 | 40 | 0.11 | 977 |

79.5 | 94.38 | 0.65 | 1680 | 94.38 | 0.65 | 1237 | 40 | 0.11 | 978 |

80.4 | 95.45 | 0.65 | 1680 | 95.45 | 0.65 | 1346 | 40 | 0.11 | 1000 |

81.5 | 94.91 | 0.65 | 1680 | 94.91 | 0.65 | 358 | 40 | 0.11 | 1002 |

82.9 | 96.91 | 0.65 | 1610 | 96.91 | 0.65 | 2350 | 40 | 0.11 | 1022 |

83.0 | 96.96 | 0.65 | 1610 | 96.96 | 0.65 | 2244 | 40 | 0.11 | 1032 |

## Appendix B

^{4}− 0.000017560712·t

^{3}+ 0.008183264951·t

^{2}− 0.377604877762·t + 5.038272554766

^{2}= 0.999999999544

^{4}− 0.000017724546·t

^{3}+ 0.008198483260·t

^{2}− 0.378158562476·t + 4.575836547896

^{2}= 0.999999999420

^{4}− 0.000017674814·t

^{3}+ 0.008194275370·t

^{2}− 0.378007050602·t + 4.577893162052

^{2}= 0.999999999452

^{4}− 0.000017659707·t

^{3}+ 0.008192987671·t

^{2}− 0.377960479895·t + 4.578292957558

^{2}= 0.999999999452

^{4}− 0.000017646885·t

^{3}+ 0.008191909080·t

^{2}− 0.377921808781·t + 4.578797824676

^{2}= 0.999999999455

^{4}− 0.000017612085·t

^{3}+ 0.008188960776·t

^{2}− 0.377816106864·t + 4.583459267439

^{2}= 0.999999999472

^{4}− 0.000017550696·t

^{3}+ 0.008183545317·t

^{2}− 0.377613475150·t + 4.583763019346

^{2}= 0.999999999433

^{4}− 0.000017526578·t

^{3}+ 0.008181456140·t

^{2}− 0.377536693237·t + 4.585760948106

^{2}= 0.999999999452

^{4}− 0.000017533970·t

^{3}+ 0.008182090496·t

^{2}− 0.377559797341·t + 4.587064973324

^{2}= 0.999999999442

^{4}− 0.000017549625·t

^{3}+ 0.008183378488·t

^{2}− 0.377604963571·t + 4.596660891228

^{2}= 0.999999999461

^{4}− 0.000017543499·t

^{3}+ 0.008182856108·t

^{2}− 0.377586423719·t + 4.600440241904

^{2}= 0.999999999449

^{4}− 0.000017547513·t

^{3}+ 0.008183249124·t

^{2}− 0.377603071989·t + 4.606707460725

^{2}= 0.999999999451

^{4}− 0.000017542259·t

^{3}+ 0.008182768307·t

^{2}− 0.377584755059·t + 4.607463940507

^{2}= 0.999999999461

## References

- Aljundi, I.H. Energy and exergy analysis of a steam power plant in Jordan. Appl. Therm. Eng.
**2009**, 29, 324–328. [Google Scholar] [CrossRef] - Sengupta, S.; Datta, A.; Duttagupta, S. Exergy analysis of a coal-based 210MW thermal power plant. Int. J. Energy Res.
**2007**, 31, 14–28. [Google Scholar] [CrossRef] - Erdema, H.H.; Akkaya, A.V.; Cetin, B.; Dagdas, A.; Sevilgen, S.H.; Sahin, B.; Teke, I.; Gungor, C.; Atas, S. Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. Int. J. Therm. Sci.
**2009**, 48, 2179–2186. [Google Scholar] [CrossRef] - Wang, L.; Yang, Y.; Morosuk, T.; Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant. Energies
**2012**, 5, 1850–1863. [Google Scholar] [CrossRef] - Ahmadi, G.R.; Toghraie, D. Energy and exergy analysis of Montazeri Steam Power Plant in Iran. Renew. Sustain. Energy Rev.
**2016**, 56, 454–463. [Google Scholar] [CrossRef] - Ataei, A.; Yoo, C.K. Combined pinch and exergy analysis for energy efficiency optimization in a steam power plant. Int. J. Phys. Sci.
**2010**, 5, 1110–1123. [Google Scholar] - Toledo, M.; Abugaber, J.; Lugo, R.; Salazar, M.; Rodríguez, A.; Rueda, A. Energetic analysis of two thermal power plants with six and seven heaters. Open J. Appl. Sci.
**2014**, 4, 6–12. [Google Scholar] [CrossRef][Green Version] - Mehrabani, K.M.; Yazdi, S.S.F.; Mehrpanahi, A.; Abad, S.N.N. Optimization of exergy in repowering steam power plant by feed water heating using genetic algorithm. Indian J. Sci. Res.
**2014**, 1, 183–198. [Google Scholar] - Espatolero, S.; Romeo, L.M.; Cortes, C. Efficiency improvement strategies for the feed water heaters network designing in supercritical coal-fired power plants. Appl. Therm. Eng.
**2014**, 73, 449–460. [Google Scholar] [CrossRef] - Adibhatlaa, S.; Kaushik, S.C. Exergy and thermoeconomic analyses of 500 MWe sub critical thermal power plant with solar aided feed water heating. Appl. Therm. Eng.
**2017**, 123, 340–352. [Google Scholar] [CrossRef] - Ahmadia, G.; Toghraieb, D.; Akbari, O.A. Solar parallel feed water heating repowering of a steam power plant: A case study in Iran. Renew. Sustain. Energy Rev.
**2017**, 77, 474–485. [Google Scholar] [CrossRef] - Mohammadi, A.; Ahmadi, M.H.; Bidi, M.; Ghazvini, M.; Ming, T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Rep.
**2018**, 4, 243–251. [Google Scholar] [CrossRef] - Jamel, M.S.; Rahman, A.A.; Shamsuddin, A.H. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew. Sustain. Energy Rev.
**2013**, 20, 71–81. [Google Scholar] [CrossRef] - Bakos, G.C.; Tsechelidou, C. Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field. Renew. Energy
**2013**, 60, 540–547. [Google Scholar] [CrossRef] - Adibhatla, S.; Kaushik, S.C. Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option. Sustain. Energy Technol.
**2017**, 21, 89–99. [Google Scholar] [CrossRef] - Koroglu, T.; Sogut, O.S. Conventional and advanced exergy analyses of a marine steam power plant. Energy J.
**2018**, 163, 392–403. [Google Scholar] [CrossRef] - Poljak, I.; Glavan, I.; Orović, J.; Mrzljak, V. Three approaches to low-duty turbo compressor efficiency exploitation evaluation. Appl. Sci.
**2020**, 10, 3373. [Google Scholar] [CrossRef] - Problems Caused by Oil in Boiler Feed Water System. Available online: http://www.gard.no/web/updates/content/51933/problems-caused-by-oil-in-boiler-feed-water-system (accessed on 30 May 2020).
- Available online: http://www.duivendijk.net/gas/grace_b1.htm (accessed on 1 April 2020).
- Poljak, I.; Grace, B. Machinery Instruction Manual; Hyundai Heavy Industries Ltd.: Caloocan, Philippines, 2007. [Google Scholar]
- Holm, J.T. Technical and Research Bulletin 3-11, Marine Steam Power Plant Heat Balance Practices; The Society of Naval Architects and Marine Engineers: Alexandria, VA, USA, 1971; p. 11. [Google Scholar]
- ELSTER Messtechnik GmbH, M 100/M 110 Multi-Jet Water Meter Traditional Meter Bodies, for Horizontal Installation, for Risers. Available online: https://www.elster.com/assets/products/products_elster_files/M100_M110 (accessed on 1 April 2020).
- Available online: http://www.ic72.com/pdf_file/-/87315.pdf (accessed on 30 May 2020).
- Available online: http://www.krtproduct.com/krt_Picture/sample/1_spare%20part/yamatake/Fi_ss01/SS2-DST100-0100.pdf (accessed on 30 May 2020).
- Available online: https://www.priggen.com/GTF-601-Pt100-Sheath-Element-Immersion-Probe-for-Liquids-and-Gases-200-to-600C_1 (accessed on 30 May 2020).
- Available online: http://hwt0346.51software.net/uploadfiles/2011112919581355.pdf (accessed on 30 May 2020).
- Available online: https://www.sika.net/en/products/sensors-and-measuring-instruments/industrial-thermometers/sika-thermometers-industry-and-marine.html (accessed on 30 May 2020).
- Available online: https://www.sika.net/en/measuring-by-categories/pressure/mechanical-pressure-gauges/bourdon-tube-pressure-gauges.html (accessed on 30 May 2020).
- Zenner International GmbH & Co. KG. Available online: https://partners.sigfox.com/products/edc-sigfox-868-dv (accessed on 30 May 2020).
- Available online: https://ashcroft.com/products/pressure_gauges/process_gauges/1259-duragauge.cfm (accessed on 30 May 2020).
- Lemmon, E.W.; Huber, M.L.; Mc Linden, M.O. NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0; User’s Guide: Boulder, CO, USA, 2007. [Google Scholar]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 210, 249, 334, 403. [Google Scholar]
- Cengel, Y.A.; Boles, M.A. Thermodynamics an Engineering Approach, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2015; pp. 251, 311, 395, 396, 467–468. [Google Scholar]
- Kaushik, S.C.; Reddy, V.S.; Tyagi, S.K. Energy and exergy analyses of thermal power plants: A review. Renew. Sustain. Energy Rev.
**2011**, 15, 1857–1872. [Google Scholar] [CrossRef] - Adibhatla, S.; Kaushik, S.C. Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Appl. Therm. Eng.
**2014**, 73, 51–65. [Google Scholar] [CrossRef] - Mrzljak, V.; Poljak, I.; Medica-Viola, V. Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Appl. Therm. Eng.
**2017**, 119, 331–346. [Google Scholar] [CrossRef] - Mrzljak, V.; Poljak, I.; Mrakovčić, T. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy Convers. Manag.
**2017**, 140, 307–323. [Google Scholar] [CrossRef] - Poljak, I.; Orović, J.; Mrzljak, V.; Bernečić, D. Energy and exergy evaluation of a two-stage axial vapour compressor on the LNG carrier. Entropy
**2020**, 22, 115. [Google Scholar] [CrossRef][Green Version] - Tolgyessy, J. (Ed.) Part of volume chemistry and biology water. In Studies in Environmental Science; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 31–32. [Google Scholar] [CrossRef]
- Haseli, Y.; Dincer, I.; Naterer, G.F. Optimum temperatures in a shell and tube condenser with respect to exergy. Int. J. Heat Mass Transf.
**2008**, 51, 2462–2470. [Google Scholar] [CrossRef] - Bilgili, M.; Ozbek, A.; Yasar, A.; Simsek, E.; Sahin, B. Effect of atmospheric temperature on exergy efficiency and destruction of a typical residential split air conditioning system. Int. J. Exergy
**2016**, 20, 66–84. [Google Scholar] [CrossRef] - Wagner, W.I.; Pruss, A. The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data
**2002**, 31, 387–535. [Google Scholar] [CrossRef][Green Version] - Weisstein, E.W. “Least Squares Fitting—Polynomial.” From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html (accessed on 1 April 2020).
- Kenney, J.F.; Keeping, E.S. Linear of statistics and correlation. In Mathematics of Statistics, 3rd ed.; Princeton: Princeton, NJ, USA, 1962; Available online: https://mathworld.wolfram.com/LeastSquaresFitting.html (accessed on 1 April 2020).
- Aldrovandi, R. Special Matrices of Mathematical Physics: Stochastic, Circulant and Bell Matrices; World Scientific: Singapore, 2001; p. 193. [Google Scholar]
- Fylstra, D.; Lasdon, L.; Watson, J.; Waren, A. Design and use of the microsoft excel solver. INFORMS J. Appl. Anal.
**1998**, 28, 29–55. [Google Scholar] [CrossRef][Green Version] - Water Treatment Handbook a Practical Application Manual, 1st ed.; UNITOR: Oslo, Norway, 1996; p. 45. Available online: http://slidepdf.com/reader/full/wilhemsen-water-treatment-handbook (accessed on 1 April 2020).
- Nakano, K. Boiler Instruction and Maintenance Manual I; Mitsubishi Heavy Industries LTD: Tokyo, Japan, 2005; Internal vessel document; p. 28. [Google Scholar]

**Figure 6.**Atmospheric drain tank condensate ratio in mixing point with feed water with main turbine load variation.

Equipment | Size |
---|---|

Main turbine power | 29,420 kW |

Main condenser vacuum | 38 mm Hg, at 27 °C of seawater |

Turbo generator | 2 × 3850 kW |

Feed pump | 570 kW |

Main boiler, steam generation | 2 × 70,000 kg/h |

Component | Measuring Equipment |
---|---|

1. Desuperheating outlet steam pressure | 1. Pressure transmitter Yamatake STG940 [23] |

2. Steam mass flow | 2. Differential pressure transmitter Yamatake JTD960A [24] |

3. Desuperheating steam outlet temperature | 3. Greisinger GTF 601-Pt100-immersion probe [25] |

4. Main propulsion turbine shaft power and rpm | 4. Kyma shaft power meter, Model KPM-PFS [26] |

5. First-stage feed heater temperature | 5. SIKA thermometers for industry and marine sector [27] |

6. Gland seal condenser temperature | 6. SIKA thermometers for industry and marine sector [27] |

7. Gland seal condenser pressure | 7. Differential pressure transmitter Yamatake JTD960A [24] |

8. Distillate water temperature gauge | 8. SIKA thermometers for industry and marine sector [27] |

9. Fresh water generator temperature gauge | 9. SIKA thermometers for industry and marine sector [27] |

10. Contaminated and clean condensate temperature gauge | 10. SIKA thermometers for industry and marine sector [27] |

11. Atmospheric drain tank temperature | 11. SIKA thermometers for industry and marine sector [27] |

12. 1st stage feed water pressure gauge | 12. SIKA pressure gauges, type MRE-M and MRE-g [28] |

13. Fresh water generator distillate flow meter | 13. Zenner international GmbH [29] |

14. Fresh water generator pressure gauge | 14. Type 1259 Process Pressure Gauge—Ashcroft [30] |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Poljak, I.; Bielić, T.; Mrzljak, V.; Orović, J. Analysis and Optimization of Atmospheric Drain Tank of Lng Carrier Steam Power Plant. *J. Mar. Sci. Eng.* **2020**, *8*, 568.
https://doi.org/10.3390/jmse8080568

**AMA Style**

Poljak I, Bielić T, Mrzljak V, Orović J. Analysis and Optimization of Atmospheric Drain Tank of Lng Carrier Steam Power Plant. *Journal of Marine Science and Engineering*. 2020; 8(8):568.
https://doi.org/10.3390/jmse8080568

**Chicago/Turabian Style**

Poljak, Igor, Toni Bielić, Vedran Mrzljak, and Josip Orović. 2020. "Analysis and Optimization of Atmospheric Drain Tank of Lng Carrier Steam Power Plant" *Journal of Marine Science and Engineering* 8, no. 8: 568.
https://doi.org/10.3390/jmse8080568