Main Anthropogenic Impacts on Benthic Macrofauna of Sandy Beaches: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temporal Distribution of the Selected Studies
3.2. Geographical Distribution of Studies
3.3. Methods of Study and Considered Taxa
4. Discussion
4.1. Studies on Trampling
4.2. Studies on Breakwater Barriers
4.3. Studies on Mechanical Beach Cleaning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Short, A.D. The role of wave height, period, slope, tide range and embaymentisation in beach classifications: A review. Rev. Chil. Hist. Nat. 1996, 69, 589–604. [Google Scholar]
- Nel, R.; Campbell, E.E.; Harris, L.; Hauser, L.; Schoeman, D.; McLachlan, A.; Du Preez, D.R.; Bezuidenhout, K.; Schlacher, T.A. The status of sandy beach science: Past trends, progress, and possible futures. Estuarine Coast. Shelf Sci. 2014, 150, 1–10. [Google Scholar] [CrossRef]
- Parlagreco, L.; Melito, L.; DeVoti, S.; Perugini, E.; Soldini, L.; Zitti, G.; Brocchini, M. Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches. Sensors 2019, 19, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huettel, M.; Rusch, A. Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr. 2000, 45, 534–549. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, A.S.; González, M.T.; Bremner, J.; Oliva, M.; Heilmayer, O.; Laudien, J.; Riascos, J.M. Functional diversity of marine macrobenthic communities from sublittoral soft-sediment habitats off northern Chile. Helgol. Mar. Res. 2010, 65, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Volkenborn, N.; Polerecky, L.; Hedtkamp, S.I.C.; Van Beusekom, J.E.E.; De Beer, D. Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol. Oceanogr. 2007, 52, 1898–1909. [Google Scholar] [CrossRef] [Green Version]
- Defeo, O.; McLachlan, A.; Schoeman, D.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuarine Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Lozoya, J.P.; Sardá, R.; Jiménez, J.A. Beach multi-risk assessment considering ecosystem services and coastal hazards: A tool for ICZM. In Sandy Beaches and Coastal Zone Management. In Proceedings of the Fifth International Symposium on Sandy Beaches, Rabat, Morocco, 19–23 October 2009; pp. 133–134. [Google Scholar]
- Sardá, R.; Valls, J.F.; Pintó, J.; Ariza, E.; Lozoya, J.P.; Fraguell, R.M.; Marti, C.; Rucabado, J.; Ramis, J.; Jiménez, J. Towards a new Integrated Beach Management System: The Ecosystem-Based Management System for Beaches. Ocean Coast. Manag. 2015, 118, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Fanini, L.; Plaiti, W.; Papageorgiou, N. Environmental education: Constraints and potential as seen by sandy beach researchers. Estuarine Coast. Shelf Sci. 2019, 218, 173–178. [Google Scholar] [CrossRef]
- Lucrezi, S.; Esfehani, M.H.; Ferretti, E.; Cerrano, C. The effects of stakeholder education and capacity building in marine protected areas: A case study from southern Mozambique. Mar. Policy 2019, 108, 103645. [Google Scholar] [CrossRef]
- Eu ‘Proposal for A Directive of The European Parliament and of The Council Establishing a Framework for Maritime Spatial Planning and Integrated Coastal Management’; COM (2013) 133 final, 0074; European Commission: Brussels, Belgium, 2013; pp. 1–3.
- Reis, R.D.S.; Rizzo, A.E. Human Trampling Effect on Benthic Fauna of Sandy Beaches with Different Intensities of Use in Rio De Janeiro, Brazil. Oecologia Aust. 2019, 23, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, S.; Botero, C.M.; Yanes, A. To clean or not to clean? A critical review of beach cleaning methods and impacts. Mar. Pollut. Bull. 2019, 139, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Dafforn, K.; Glasby, T.M.; Airoldi, L.; Rivero, N.K.; Mayer-Pinto, M.; Johnston, E. Marine urbanization: An ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ. 2015, 13, 82–90. [Google Scholar] [CrossRef]
- Pioch, S.; Relini, G.; Souche, J.; Stive, M.; De Monbrison, D.; Nassif, S.; Simard, F.; Allemand, D.; Saussol, P.; Spieler, R.; et al. Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration. Ecol. Eng. 2018, 120, 574–584. [Google Scholar] [CrossRef]
- Morris, R.L.; Heery, E.C.; Loke, L.H.; Lau, E.; Strain, E.M.; Airoldi, L.; Alexander, K.A.; Bishop, M.J.; Coleman, R.A.; Cordell, J.R.; et al. Design Options, Implementation Issues and Evaluating Success of Ecologically Engineered Shorelines. In Oceanography and Marine Biology; Informa UK Limited: London, UK, 2019; pp. 169–228. [Google Scholar]
- Davenport, J.; Davenport, J.L. The impact of tourism and personal leisure transport on coastal environments: A review. Estuarine Coast. Shelf Sci. 2006, 67, 280–292. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Thompson, L.; Price, S. Vehicles versus conservation of invertebrates on sandy beaches: Mortalities inflicted by off-road vehicles on ghost crabs. Mar. Ecol. 2007, 28, 354–367. [Google Scholar] [CrossRef]
- McLachlan, A.; Defeo, O.; Jaramillo, E.; Short, A.D. Sandy beach conservation and recreation: Guidelines for optimising management strategies for multi-purpose use. Ocean Coast. Manag. 2013, 71, 256–268. [Google Scholar] [CrossRef]
- Machado, P.M.; Suciu, M.C.; Costa, L.L.; Tavares, D.C.; Zalmon, I.R. Tourism impacts on benthic communities of sandy beaches. Mar. Ecol. 2017, 38, e12440. [Google Scholar] [CrossRef]
- Cardoso, R.; Barboza, C.A.; Skinner, V.B.; Cabrini, T.M. Crustaceans as ecological indicators of metropolitan sandy beaches health. Ecol. Indic. 2016, 62, 154–162. [Google Scholar] [CrossRef]
- Reyes-Martínez, M.J.; Ruíz-Delgado, M.C.; Sanchez-Moyano, J.E.; Garcia-García, F.J. Response of intertidal sandy-beach macrofauna to human trampling: An urban vs. natural beach system approach. Mar. Environ. Res. 2015, 103, 36–45. [Google Scholar] [CrossRef]
- Aller, R. Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures. In Nitrogen Cycling in Coastal Marine Environments; Blackburn, T.H., Sørensen, J., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 1988; pp. 301–338. [Google Scholar]
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.O.; Banta, G.T. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 2012, 446, 285–302. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, A.F.; DeWitt, T.H. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling. Limnol. Oceanogr. 2009, 54, 1911–1932. [Google Scholar] [CrossRef]
- Constable, A.J. Ecology of benthic macro-invertebrates in soft-sediment environments: A review of progress towards quantitative models and predictions. Austral Ecol. 1999, 24, 452–476. [Google Scholar] [CrossRef]
- Carvalho, A.N.; Pereira, F.; Bosnic, I.; Taborda, R.; Drago, T.; Gaspar, M.B. Sedimentary dynamics and benthic macrofauna distribution: Insights from the shoreface in southern Portugal. J. Sea Res. 2018, 137, 9–25. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Pérez, V. A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Muxika, I.; Borja, A.; Bald, J. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar. Pollut. Bull. 2007, 55, 16–29. [Google Scholar] [CrossRef]
- Burnett, N.P.; Sarà, G. Functional responses of intertidal bivalves to repeated sub-lethal, physical disturbances. Mar. Environ. Res. 2019, 147, 32–36. [Google Scholar] [CrossRef]
- Bessa, F.; Cunha, D.; Gonçalves, S.; Marques, J.C. Sandy beach macrofaunal assemblages as indicators of anthropogenic impacts on coastal dunes. Ecol. Indic. 2013, 30, 196–204. [Google Scholar] [CrossRef]
- Bessa, F.; Gonçalves, S.; Franco, J.N.; André, J.N.; Cunha, P.P.; Marques, J.C. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecol. Indic. 2014, 41, 49–57. [Google Scholar] [CrossRef]
- Veloso, V.G.; Silva, E.S.; Caetano, C.H.S.; Cardoso, R.S. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Boil. Conserv. 2006, 127, 510–515. [Google Scholar] [CrossRef]
- Veloso, V.G.; Neves, G.; Lozano, M.; Perez-Hurtado, A.; Gago, C.G.; Hortas, F.; Garcia-García, F.J. Responses of talitrid amphipods to a gradient of recreational pressure caused by beach urbanization. Mar. Ecol. 2008, 29, 126–133. [Google Scholar] [CrossRef]
- Veloso, V.G.; Sallorenzo, I.A.; Ferreira, B.C.A.; De Souza, G.N. Atlantorchestoidea brasiliensis (Crustacea: Amphipoda) as an indicator of disturbance caused by urbanization of a beach ecosystem. Braz. J. Oceanogr. 2010, 58, 13–21. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Dexter, D.M. Sandy Beach Community Structure: The Role of Exposure and Latitude. J. Biogeogr. 1992, 19, 59. [Google Scholar] [CrossRef]
- Barboza, F.R.; Defeo, O. Global diversity patterns in sandy beach macrofauna: A biogeographic analysis. Sci. Rep. 2015, 5, 14515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrush, S.F.; Hewitt, J.E.; Kraan, C.; Lohrer, A.M.; Pilditch, C.A.; Douglas, E. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B Boil. Sci. 2017, 284, 20162861. [Google Scholar] [CrossRef] [Green Version]
- Löffler, M.; Coosen, J. Ecological Impact of Sand Replenishment; Healy, M.G., Doody, J.P., Eds.; Directions in European Coastal Management. Samara Publishing Ltd.: Cardigan, UK, 1995; Volume 14, pp. pp. 291–299. [Google Scholar]
- Greene, K. Beach Nourishment: A review of the biological and physical impacts; ASMFC Habitat Management Series #7; Atlantic States Marine Fisheries Commission: Washington DC, USA, 2002; p. 174. [Google Scholar]
- Speybroeck, J.; Bonte, D.; Courtens, W.; Gheskiere, T.; Grootaert, P.; Maelfait, J.-P.; Mathys, M.; Provoost, S.; Sabbe, K.; Stienen, V.V.L.; et al. Beach nourishment: an ecologically sound coastal defence alternative? A Rev. Aquat. Conserv. 2006, 16, 419–435. [Google Scholar] [CrossRef]
- Leewis, L.; van Bodegom, P.M.; Rozema, J.; Janssen, G.M. Does beach nourishment have long-term effects on intertidal macoinvertebrate species abundance? Estuar. Coast. Shelf Sci. 2012, 113, 172–181. [Google Scholar] [CrossRef]
- Witmer, A.D.; Bell, A.C.; Ammons, A.W. Examination of intertidal and nearshore benthic macroinvertebrates along two non-nourished Florida beaches. Reg. Stud. Mar. Sci. 2019, 27, 100548. [Google Scholar] [CrossRef]
- Costa, L.L.; Tavares, D.C.; Suciu, M.C.; Rangel, D.F.; Zalmon, I.R. Human-induced changes in the trophic functioning of sandy beaches. Ecol. Indic. 2017, 82, 304–315. [Google Scholar] [CrossRef]
- Fanini, L.; Zampicinini, G.; Pafilis, E. Beach parties: A case study on recreational human use of the beach and its effects on mobile arthropod fauna. Ethol. Ecol. Evol. 2013, 26, 69–79. [Google Scholar] [CrossRef]
- Jaramillo, E.; Contreras, H.; Quijon, P. Macroinfauna and human disturbance in a sandy beach of south-central Chile. Rev. Chil. Hist. Nat. 1996, 69, 655–663. [Google Scholar]
- Wynberg, R.; Branch, G.M. Trampling associated with bait-collection for sandprawns Callianassa kraussi Stebbing: Effects on the biota of an intertidal sandflat. Environ. Conserv. 1997, 24, 139–148. [Google Scholar] [CrossRef]
- Moffett, M.D.; McLachlan, A.; Winter, P.E.D.; De Ruyck, A.M.C. Impact of trampling on sandy beach macrofauna. J. Coast. Conserv. 1998, 4, 87–90. [Google Scholar] [CrossRef]
- Rossi, F.; Forster, R.; Montserrat, F.; Ponti, M.; Terlizzi, A.; Ysebaert, T.; MiddelburgiD, J. Human trampling as short-term disturbance on intertidal mudflats: Effects on macrofauna biodiversity and population dynamics of bivalves. Mar. Boil. 2007, 151, 2077–2090. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Thompson, L. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Boil. Conserv. 2012, 147, 123–132. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Carracher, L.K.; Porch, N.; Connolly, R.M.; Olds, A.D.; Gilby, B.L.; Ekanayake, K.B.; Maslo, B.; Weston, M.A. The Early Shorebird Will Catch Fewer Invertebrates on Trampled Sandy Beaches. PLoS ONE 2016, 11, e0161905. [Google Scholar] [CrossRef]
- Ugolini, A.; Ungherese, G.; Somigli, S.; Galanti, G.; Baroni, D.; Borghini, F.; Cipriani, N.; Nebbiai, M.; Passaponti, M.; Focardi, S. The amphipod Talitrus saltator as a bioindicator of human trampling on sandy beaches. Mar. Environ. Res. 2008, 65, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Lucrezi, S.; Schlacher, T.A.; Robinson, W. Human disturbance as a cause of bias in ecological indicators for sandy beaches: Experimental evidence for the effects of human trampling on ghost crabs (Ocypode spp.). Ecol. Indic. 2009, 9, 913–921. [Google Scholar] [CrossRef]
- Kim, T.W.; Kim, S.; Lee, J.-A. Effect of Mudflat Trampling on Activity of Intertidal Crabs. Ocean Sci. J. 2018, 53, 101–106. [Google Scholar] [CrossRef]
- Barros, F. Ghost crabs as a tool for rapid assessment of human impacts on exposed sandy beaches. Boil. Conserv. 2001, 97, 399–404. [Google Scholar] [CrossRef]
- Noriega, R.; Schlacher, T.A.; Smeuninx, B. Reductions in Ghost Crab Populations Reflect Urbanization of Beaches and Dunes. J. Coast. Res. 2012, 279, 123–131. [Google Scholar] [CrossRef]
- Stelling-Wood, T.P.; Clark, G.F.; Poore, A.G.B. Responses of ghost crabs to habitat modification of urban sandy beaches. Mar. Environ. Res. 2016, 116, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.T.; Calado, T. Number of ghost crab burrows does not correspond to population size. Open Life Sci. 2013, 8, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Ocaña, F.A.; Navarrete, A.D.J.; Navarrete, R.M.D.J.; Rivera, J.J.O. Efectos del disturbio humano sobre la dinámica poblacional de Ocypode quadrata (Decapoda: Ocypodidae) en playas del Caribe mexicano. Revista de Biología Tropical 2016, 64, 1625–1641. [Google Scholar] [CrossRef] [Green Version]
- Garcia-García, F.J.; Reyes-Martínez, M.J.; Ruiz-Delgado, M.C.; Sanchez-Moyano, J.E.; Casas, M.C.; Perez-Hurtado, A. Does the gathering of shellfish affect the behavior of gastropod scavengers on sandy beaches? A field experiment. J. Exp. Mar. Boil. Ecol. 2015, 467, 1–6. [Google Scholar] [CrossRef]
- Hall, A.E.; Herbert, R.J.; Britton, J.R.; Hull, S.L. Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures. Estuarine Coast. Shelf Sci. 2018, 210, 68–78. [Google Scholar] [CrossRef]
- Firth, L.; Knights, A.; Bridger, D.; Evans, A.; Mieszkowska, N.; Moore, P.J.; O’Connor, N.; Sheehan, E.; Thompson, R.; Hawkins, S. Ocean Sprawl: Challenges and Opportunities for Biodiversity Management In A Changing World. Oceanogr. Mar. Biol. 2016, 54, 193–270. [Google Scholar] [CrossRef] [Green Version]
- Cacabelos, E.; Martins, G.M.; Thompson, R.; Prestes, A.; Azevedo, J.; Neto, A. Material type and roughness influence structure of inter-tidal communities on coastal defenses. Mar. Ecol. 2016, 37, 801–812. [Google Scholar] [CrossRef]
- Jackson, N.L.; Harley, M.D.; Armaroli, C.; Nordstrom, K.F. Beach morphologies induced by breakwaters with different orientations. Geomorphology 2015, 239, 48–57. [Google Scholar] [CrossRef]
- Moschella, P.; Abbiati, M.; Aberg, P.; Airoldi, L.; Anderson, J.; Bacchiocchi, F.; Bulleri, F.; Dinesen, G.; Frost, M.; Gacia, E.; et al. Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coast. Eng. 2005, 52, 1053–1071. [Google Scholar] [CrossRef]
- Bertasi, F.; Colangelo, M.A.; Abbiati, M.; Ceccherelli, V.U. Effects of an artificial protection structure on the sandy shore macrofaunal community: The special case of Lido di Dante (Northern Adriatic Sea). Hydrobiologia 2007, 586, 277–290. [Google Scholar] [CrossRef]
- Martin, D.; Bertasi, F.; Colangelo, M.A.; De Vries, M.; Frost, M.; Hawkins, S.J.; MacPherson, E.; Moschella, P.S.; Satta, M.P.; Thompson, R.C.; et al. Ecological impact of coastal defence structures on sediment and mobile fauna: Evaluating and forecasting consequences of unavoidable modifications of native habitats. Coast. Eng. 2005, 52, 1027–1051. [Google Scholar] [CrossRef] [Green Version]
- Munari, C.; Corbau, C.; Simeoni, U.; Mistri, M. Coastal defence through low crested breakwater structures: Jumping out of the frying pan into the fire? Mar. Pollut. Bull. 2011, 62, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Becchi, C.; Ortolani, I.; Muir, A.I.; Cannicci, S. The effect of breakwaters on the structure of marine soft-bottom assemblages: A case study from a North-Western Mediterranean basin. Mar. Pollut. Bull. 2014, 87, 131–139. [Google Scholar] [CrossRef]
- Lamberti, A.; Zanuttigh, B. An integrated approach to beach management in Lido di Dante, Italy. Estuarine Coast. Shelf Sci. 2005, 62, 441–451. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Broitman, B.R.; Thiel, M. Spatial variability in community composition on a granite breakwater versus natural rocky shores: Lack of microhabitats suppresses intertidal biodiversity. Mar. Pollut. Bull. 2014, 87, 257–268. [Google Scholar] [CrossRef]
- Malm, T.; Råberg, S.; Fell, S.; Carlsson, P. Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity. Estuarine Coast. Shelf Sci. 2004, 60, 339–347. [Google Scholar] [CrossRef]
- Morton, J.K.; Ward, E.J.; De Berg, K.C. Potential Small- and Large-Scale Effects of Mechanical Beach Cleaning on Biological Assemblages of Exposed Sandy Beaches Receiving Low Inputs of Beach-Cast Macroalgae. Chesap. Sci. 2015, 38, 2083–2100. [Google Scholar] [CrossRef]
- Dugan, J.E.; Hubbard, D.M.; McCrary, M.D.; Pierson, M.O. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine Coast. Shelf Sci. 2003, 58, 25–40. [Google Scholar] [CrossRef]
- Gilburn, A. Mechanical grooming and beach award status are associated with low strandline biodiversity in Scotland. Estuarine Coast. Shelf Sci. 2012, 107, 81–88. [Google Scholar] [CrossRef]
- Griffin, C.; Day, N.; Rosenquist, H.; Wellenreuther, M.; Bunnefeld, N.; Gilburn, A. Tidal range and recovery from the impacts of mechanical beach grooming. Ocean Coast. Manag. 2018, 154, 66–71. [Google Scholar] [CrossRef]
- Fanini, L.; Cantarino, C.M.; Scapini, F. Relationships between the dynamics of two Talitrus saltator populations and the impacts of activities linked to tourism. Oceanologia 2005, 47, 93–112. [Google Scholar]
- De Souza, G.N.; Oliveira, C.A.; Tardem, A.S.; Soares-Gomes, A. Counting and measuring ghost crab burrows as a way to assess the environmental quality of beaches. Ocean Coast. Manag. 2017, 140, 1–10. [Google Scholar] [CrossRef]
- Van der Merwe, D.; Van der Merwe, D. Effects of off-road vehicles on the macrofauna of a sandy beach. S. Afr. J. Sci. S. Afr. Tydskr. Wet. 1991, 87, 210–213. [Google Scholar]
- Schlacher, T.A.; Thompson, L.M.C. Physical Impacts Caused by Off-Road Vehicles to Sandy Beaches: Spatial Quantification of Car Tracks on an Australian Barrier Island. J. Coast. Res. 2008, 2, 234–242. [Google Scholar] [CrossRef]
- Watzin, M.C. The effects of meiofauna on settling macrofauna: Meiofauna may structure macrofaunal communities. Oecologia 1983, 59, 163–166. [Google Scholar] [CrossRef]
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds OJ L 20, 26.1.2010. pp. 7–25. Available online: https://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX:32009L0147 (accessed on 25 May 2020).
- Iucn Charadrius alexandrinus: BirdLife International. IUCN Red List Threat. Species 2016. [CrossRef]
- Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Fang, X.; Hou, X.; Li, X.; Hou, W.; Nakaoka, M.; Yu, X. Ecological connectivity between land and sea: A review. Ecol. Res. 2017, 33, 51–61. [Google Scholar] [CrossRef]
- Kopnina, H.; Washington, H.; Taylor, B.; Piccolo, J.J. Anthropocentrism: More than Just a Misunderstood Problem. J. Agric. Environ. Ethic 2018, 31, 109–127. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afghan, A.; Cerrano, C.; Luzi, G.; Calcinai, B.; Puce, S.; Pulido Mantas, T.; Roveta, C.; Di Camillo, C.G. Main Anthropogenic Impacts on Benthic Macrofauna of Sandy Beaches: A Review. J. Mar. Sci. Eng. 2020, 8, 405. https://doi.org/10.3390/jmse8060405
Afghan A, Cerrano C, Luzi G, Calcinai B, Puce S, Pulido Mantas T, Roveta C, Di Camillo CG. Main Anthropogenic Impacts on Benthic Macrofauna of Sandy Beaches: A Review. Journal of Marine Science and Engineering. 2020; 8(6):405. https://doi.org/10.3390/jmse8060405
Chicago/Turabian StyleAfghan, Afghan, Carlo Cerrano, Giorgia Luzi, Barbara Calcinai, Stefania Puce, Torcuato Pulido Mantas, Camilla Roveta, and Cristina Gioia Di Camillo. 2020. "Main Anthropogenic Impacts on Benthic Macrofauna of Sandy Beaches: A Review" Journal of Marine Science and Engineering 8, no. 6: 405. https://doi.org/10.3390/jmse8060405
APA StyleAfghan, A., Cerrano, C., Luzi, G., Calcinai, B., Puce, S., Pulido Mantas, T., Roveta, C., & Di Camillo, C. G. (2020). Main Anthropogenic Impacts on Benthic Macrofauna of Sandy Beaches: A Review. Journal of Marine Science and Engineering, 8(6), 405. https://doi.org/10.3390/jmse8060405