Simulation of Marine Towing Cable Dynamics Using a Finite Elements Method
Abstract
:1. Introduction
2. Numerical Model
2.1. Damping Coefficient
2.2. Towing Boundary Condition
3. Validation
3.1. Zhu’s Experiment
3.1.1. Optimal Simulation
3.1.2. Dependence on the Internal Damping Coefficient
3.1.3. Dependence on the Number of Nodes
3.2. Koh’s Experiment
3.2.1. Optimal Simulation
3.2.2. Dependence on the Damping Coefficient
3.2.3. Dependence on the Number of Nodes
4. Analysis of Different Towing Systems
4.1. Towing of a Submerged Body
4.2. Towing of a Floating Body
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aamo, O.M.; Fossen, T.I. Finite element modelling of mooring lines. Math. Comput. Simul. 2000, 53, 415–422. [Google Scholar] [CrossRef]
- Palm, J.; Eskilsson, C.; Bergdahl, L. An hp-adaptive discontinuous Galerkin method for modelling snap loads in mooring cables. Ocean Eng. 2017, 144, 266–276. [Google Scholar] [CrossRef]
- Azcona, J.; Munduate, X.; González, L.; Nygaard, T.A. Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Eng. 2017, 129, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Goupee, A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Eng. 2015, 104, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.H.K.; Roshko, A. Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 1988, 2, 355–381. [Google Scholar] [CrossRef]
- Boucheron, R.; Frechou, D.; Briançon-Marjollet, L. Dynamic trajectory measurement of a strained cable excited by mean flow using an improved optical stereovision system. Ocean Eng. 2018, 159, 470–480. [Google Scholar] [CrossRef]
- Zhu, Z.H. Dynamic modelling of cable system using a new nodal position finite element method. Int. J. Numer. Methods Biomed. Eng. 2010, 26, 692–704. [Google Scholar]
- Barrera, C.; Guanche, R.; Losada, I.J.; Armesto, J.A.; de los Dolores, D. Numerical and experimental modelling of mooring systems: Effects of wave groupiness on extreme loads. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; Volume 7B: Ocean Engineering. V07BT06A037. [Google Scholar]
- Koh, C.G.; Zhang, Y.; Quek, S.T. Low-Tension Cable Dynamics: Numerical and Experimental Studies. J. Eng. Mech. 1999, 125, 347–354. [Google Scholar] [CrossRef]
- Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Croz, J.D.; Greenbaum, A.; Hammarling, S.; McKenney, A.; et al. LAPACK Users’ Guide; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999. [Google Scholar]
- Hindmarsh, A.C. ODEPACK, A Systematized Collection of ODE Solver; Stepleman, R., Carver, S.M., Peskin, R., Ames, W., Vichnevetsky, R., Eds.; IMACS Transactions on Scientific Computation: Amsterdam, NL, USA, 1983; Volume 1, pp. 55–64. [Google Scholar]
- Azcona, J. Computational and Experimental Modelling of Mooring Line Dynamics for Offshore Floating Wind Turbines. Ph.D. Tesis, E.T.S.I. Navales (UPM), Madrid, Spain, 2015. [Google Scholar]
- Beirão, P.J.B.F.N.; Malça, C.M.d.S.P. Design and analysis of buoy geometries for a wave energy converter. Int. J. Energy Environ. Eng. 2014, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Newman, J.N. Marine Hydrodynamics; The Massachusetts Institute of Technology: Cambridge, MA, USA, 1977; pp. 13–16. [Google Scholar]
- Pantaleone, J.; Messer, J. The Added Mass of a Spherical Projectile. Am. J. Phys. 2011, 79, 1202–1210. [Google Scholar] [CrossRef]
Cables | Towed Sphere | |||
---|---|---|---|---|
Material | Nylon | Polyethylene | D | 4.8 m |
1150 kg/m | 1175 kg/m | m | kg | |
E | N/m | N/m | ||
L | 55 m | 55 m | ||
d | 88 mm | 72 mm | - | |
- | ||||
- | ||||
- |
Cable Material | (N) | (N) | (N) |
---|---|---|---|
Polyethylene | |||
Nylon |
Steel Cable | Towed Sphere | Intermediate Sphere | |||
---|---|---|---|---|---|
7870 kg/m | D | m | D | m | |
N/m | m | kg | m | kg | |
L | 60 m | ||||
d | 80 mm | ||||
- | - | ||||
- | - | ||||
1 | - | - |
Int. Body | (N) | (N) | (N) |
---|---|---|---|
No int. body | |||
Central inter. body | |||
Lateral inter. body |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Luis, Á.; Armesto, J.A.; Guanche, R.; Barrera, C.; Vidal, C. Simulation of Marine Towing Cable Dynamics Using a Finite Elements Method. J. Mar. Sci. Eng. 2020, 8, 140. https://doi.org/10.3390/jmse8020140
Rodríguez Luis Á, Armesto JA, Guanche R, Barrera C, Vidal C. Simulation of Marine Towing Cable Dynamics Using a Finite Elements Method. Journal of Marine Science and Engineering. 2020; 8(2):140. https://doi.org/10.3390/jmse8020140
Chicago/Turabian StyleRodríguez Luis, Álvaro, José Antonio Armesto, Raúl Guanche, Carlos Barrera, and César Vidal. 2020. "Simulation of Marine Towing Cable Dynamics Using a Finite Elements Method" Journal of Marine Science and Engineering 8, no. 2: 140. https://doi.org/10.3390/jmse8020140
APA StyleRodríguez Luis, Á., Armesto, J. A., Guanche, R., Barrera, C., & Vidal, C. (2020). Simulation of Marine Towing Cable Dynamics Using a Finite Elements Method. Journal of Marine Science and Engineering, 8(2), 140. https://doi.org/10.3390/jmse8020140