Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Laboratory Analysis
2.3. Phytoplankton Assemblages
2.4. Statistical Analysis
3. Results
3.1. 13CPOM and 15NPOM Ratios and Environmental Variables
3.2. Taxonomic Composition of Phytoplankton
3.3. Relationship between 13CPOM and 15NPOM Ratios, Environmental Variables, and Taxonomic Composition of Phytoplankton
3.4. Stepwise Multiple Regression Analyses between Stable Isotope Ratios, Environmental Variables, and Phytoplankton Taxonomy Groups
4. Discussion
4.1. Carbon Isotope Ratio in Suspended Particulate Organic Matter
4.2. Nitrogen Isotope Ratio in Suspended Particulate Organic Matter
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blackburn, T.H.; Knowles, R. Introduction. In Nitrogen Isotope Techniques; Knowles, R., Blackburn, T.H., Eds.; Academic Press: New York, NY, USA, 1993; pp. 1–10. [Google Scholar] [CrossRef]
- Duarte, C.M.; Delgado-Huertas, A.; Anton, A.; Carrillo-de-Albornoz, P.; López-Sandoval, D.C.; Agustí, S.; Almahasheer, H.; Marbá, N.; Hendriks, I.E.; Krause-Jensen, D.; et al. Stable Isotope (δ 13C, δ 15N, δ 18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers. Front. Mar. Sci. 2018, 5, 298. [Google Scholar] [CrossRef]
- Fry, B.; Jannasch, H.W.; Molyneaux, S.J.; Wirsen, C.O.; Muramoto, J.A.; King, S. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep-Sea Res. 1991, 38, 1003–1019. [Google Scholar] [CrossRef]
- Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 1996, 134, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Stribling, J.M.; Cornwell, J.C. Identification of Important Primary Producers in a Chesapeake Bay Tidal Creek System Using Stable Isotopes of Carbon and Sulfur. Estuaries 1997, 20, 77–85. [Google Scholar] [CrossRef]
- Kennedy, H.; Gaciab, E.; Kennedya, D.P.; Papadimitrioua, S.; Duarte, C.M. Organic carbon sources to SE Asian coastal sediments. Estuar. Coast. Shelf S. 2004, 60, 59–68. [Google Scholar] [CrossRef]
- Oczkowski, A.; Kreakie, B.; McKinney, R.A.; Prezioso, J. Patterns in Stable Isotope Values of Nitrogen and Carbon in Particulate Matter from the North west Atlantic Continental Shelf, from the Gulf of Maine to Cape Hatteras. Front. Mar. Sci. 2016, 3, 252. [Google Scholar] [CrossRef]
- Golubkov, S.; Golubkov, M.; Tiunov, A.; Nikulina, L. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea). J. Mar. Syst. 2017, 171, 73–80. [Google Scholar] [CrossRef]
- Golubkov, S.M.; Berezina, N.A.; Gubelit, Y.I.; Demchuk, A.S.; Golubkov, M.S.; Tiunov, A.V. A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea). Mar. Pollut. Bull. 2018, 126, 43–50. [Google Scholar] [CrossRef]
- Kaldy, J.E.; Cifuentes, L.A.; Brock, D. Using Stable Isotope Analyses to Assess Carbon Shallow Subtropical Estuary Dynamics. Estuaries 2005, 28, 86–95. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, Y.; Tang, C. Evidence for the Primary Role of Phytoplankton on Nitrogen Cycle in a Subtropical Reservoir: Reflected by the Stable Isotope Ratios of Particulate Nitrogen and Total Dissolved Nitrogen. Front. Mar. Sci. 2019, 10, 2202. [Google Scholar] [CrossRef] [Green Version]
- Boutton, T.W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In Carbon Isotope Techniques; Coleman, D.C., Fry, B., Eds.; Academic Press: New York, NY, USA, 1991; pp. 173–185. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Pennock, J.R.; Velinsky, D.J.; Ludlam, J.M.; Sharp, J.H.; Fogel, M.L. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications of δ15N dynamics under bloom conditions. Limnol. Oceanogr. 1996, 41, 451–459. [Google Scholar] [CrossRef]
- Waser, N.A.; Yin, K.; Yu, D.Z.; Ada, K.T.; Harrison, P.J.; Turpin, D.H.; Calvert, S.E. Nitrogen isotope fractionation during nitrate, ammonium and urea uptake by marine diatoms and coccolithophores under various conditions of N availability. Mar. Ecol. Prog. Ser. 1998, 169, 29–41. [Google Scholar] [CrossRef]
- Waser, N.A.; Yu, D.Z.; Yin, K.; Nielsen, B.; Harrison, P.J.; Calvert, S.E. Nitrogen isotopic fractionation during a simulated diatom spring bloom: Importance of N-starvation in controlling fractionation. Mar. Ecol. Prog. Ser. 1999, 179, 291–296. [Google Scholar] [CrossRef]
- Ostrom, N.E.; Macko, S.A.; Deibel, D.; Thompson, R.J. Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim. Cosmochim. Acta 1997, 61, 2929–2942. [Google Scholar] [CrossRef]
- Popp, B.N.; Laws, E.A.; Bidigare, R.R.; Dore, J.E.; Hanson, K.L.; Wakeham, S.G. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 1998, 62, 69–77. [Google Scholar] [CrossRef]
- Burkhardt, S.; Riebesell, U.; Zondervan, I. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim. Cosmochim. Acta 1999, 63, 3729–3741. [Google Scholar] [CrossRef] [Green Version]
- Descolas-Gros, C.; Fontugne, M.R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 1985, 87, 1–6. [Google Scholar] [CrossRef]
- Descolas-Gros, C.; Fontugne, M.R. Carboxylase activities and carbon isotope ratios of Mediterranean phytoplankton. Oceanol. Acta 1988, 245–250. [Google Scholar]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Andriukonis, E.; Gorokhova, E. Kinetic 15N-isotope effects on algal growth. Sci. Rep. 2017, 7, 44181. [Google Scholar] [CrossRef] [Green Version]
- Ryabenko, E. Stable Isotope Methods for the Study of the Nitrogen Cycle. In Topics in Oceanography; Zambianchi, E., Ed.; IntechOpen: Hamilton, NJ, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Telesh, I.V.; Golubkov, S.M.; Alimov, A.F. The Neva Estuary ecosystem. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 259–284. [Google Scholar] [CrossRef]
- Golubkov, S.M.; Golubkov, M.S.; Tiunov, A.V. Anthropogenic carbon as a basal resource in the benthic food webs in the Neva Estuary (Baltic Sea). Mar. Pollut. Bull. 2019, 146, 190–200. [Google Scholar] [CrossRef]
- Svendsen, L.M.; Bartnicki, J.; Boutrup, S.; Gustafsson, B.; Jarosinski, W.; Knuuttila, S.; Kotilainen, P.; Larsen, S.E.; Pyhälä, M.; Ruoho-Airola, T.; et al. Updated fifth Baltic Sea pollution load compilation (PLC-5.5). Balt. Sea Environ. Proc. 2015, 145, 142. [Google Scholar]
- Golubkov, M.S. Phytoplankton primary production in the Neva Estuary at the turn of the 21st Century. Inland Water Biol. 2009, 2, 312–318. [Google Scholar] [CrossRef]
- Golubkov, M.; Golubkov, S. Eutrophication in the Neva Estuary (Baltic Sea): Response to temperature and precipitation patterns. Mar. Freshw. Res. 2020, 71, 583–595. [Google Scholar] [CrossRef]
- Golubkov, M.S.; Nikulina, V.N.; Golubkov, S.M. Species-level associations of phytoplankton with environmental variability in the Neva Estuary (Baltic Sea). Oceanologia 2020. accepted. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Digital Soil Map of the World. Available online: http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14116 (accessed on 30 September 2020).
- Methods of Seawater Analysis, 3rd ed.; Grasshoff, K.; Ehrhardt, M.; Kremling, K. (Eds.) Wiley-VCH: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Hall, R.O., Jr.; Thomas, S.; Gaiser, E.E. Measuring freshwater primary production and respiration. In Principles and Standards for Measuring Primary Production; Fahey, T.J., Knapp, A.K., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 175–203. [Google Scholar] [CrossRef]
- Vernet, M.; Smith, R.C. Measuring and modeling primary production in marine pelagic ecosystems. In Principles and Standards for Measuring Primary Production; Fahey, T.J., Knapp, A.K., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 142–174. [Google Scholar] [CrossRef]
- Keough, J.R.; Sierszen, M.E.; Hagley, C.A. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol. Oceanogr. 1996, 14, 136–146. [Google Scholar] [CrossRef]
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Balt. Sea Environ. Proc. 2006, 106, 1–144. [Google Scholar]
- R Development Core Team. The R Project for Statistical Computing (Version 4.0.0). Available online: http://www.r-project.org (accessed on 30 September 2020).
- PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis (Version 1.5.2). Available online: https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html (accessed on 30 September 2020).
- Mangiafico, S.S. An R Companion for the Handbook of Biological Statistics. Available online: http://rcompanion.org/rcompanion/e_01.html (accessed on 30 September 2020).
- Car: Companion to Applied Regression. Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 30 September 2020).
- Chanton, J.P.; Lewis, F.G. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 1999, 22, 575–583. [Google Scholar] [CrossRef]
- Fogel, M.L.; Cifuentes, L.A.; Velinsky, D.J.; Sharp, J.H. Relationship of carbon availability in estuarine phytoplankton to isotopic composition. Mar. Ecol. Prog. Ser. 1992, 82, 291–300. [Google Scholar] [CrossRef]
- Descolas-Gros, C.; Fontungne, M. Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant Cell Environ. 1990, 13, 207–218. [Google Scholar] [CrossRef]
- Finlay, J.C.; Kendall, C. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 283–333. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology, 3rd ed.; Academic Press: New York, NY, USA, 2001; 755p. [Google Scholar]
- Wannicke, N.; Frey, C.; Law, C.S.; Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 2018, 24, 5031–5043. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Kikuchi, E.; Shikano, S.; Takagi, S. A study of the nitrogen stable isotope dynamics of phytoplankton in a simple natural ecosystem. Aquat. Microb. Ecol. 2004, 36, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Gu, B. Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia 2009, 160, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Yubuki, N.; Leander, B.S. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: Description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol. Biol. 2012, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 375–449. [Google Scholar] [CrossRef]
- Yoo, Y.D.; Seong, K.A.; Kim, H.S.; Jeong, H.J.; Yoon, E.Y.; Park, J.; Kim, J.I.; Shin, W.; Palenik, B. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae 2018, 73, 98–109. [Google Scholar] [CrossRef]
- Gervais, F. Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. J. Phycol. 1997, 33, 18–25. [Google Scholar] [CrossRef]
- Novarino, G. Cryptomonad taxonomy in the 21st century: The first two hundred years. In Phycological Reports: Current Advances in Algal Taxonomy and Its Applications: Phylogenetic, Ecological and Applied Perspective; Institute of Botany Polish Academy of Sciences: Kraków, Poland, 2012; pp. 19–52. [Google Scholar]
Indexes | No. | Maximum | Minimum | Median | IQR | Average | SD |
---|---|---|---|---|---|---|---|
T, °C | 36 | 24.48 | 18.43 | 20.57 | 2.28 | 21.01 | 1.54 |
S, PSU | 36 | 2.81 | 0.08 | 0.14 | 0.91 | 0.71 | 0.88 |
pH | 36 | 10.02 | 7.84 | 8.22 | 0.45 | 8.39 | 0.48 |
ORP, mV | 36 | 312.84 | 148.34 | 255.72 | 47.10 | 250.02 | 42.77 |
POM, g m−3 | 36 | 4.90 | 0.91 | 1.89 | 1.00 | 1.96 | 0.88 |
Chl a, mg m−3 | 36 | 98.08 | 5.60 | 18.45 | 13.93 | 22.72 | 17.59 |
PP, gC m−2 d−1 | 36 | 3.96 | 0.31 | 1.15 | 1.02 | 1.33 | 0.78 |
δ13CPOM, ‰ | 36 | −16.82 | −27.61 | −25.22 | 3.75 | −24.47 | 2.84 |
δ15NPOM, ‰ | 36 | 7.26 | 2.32 | 5.07 | 2.25 | 4.82 | 1.42 |
Neva River δ13CPOM, ‰ * | - | - | - | - | - | −26.8 | 0.1 ** |
Neva River δ15NPOM, ‰ * | - | - | - | - | - | 0.9 | 0.1 ** |
Taxonomic Group | Number of Species | Number of Occurrence | Max | Min | Median | IQR | Mean | SD |
---|---|---|---|---|---|---|---|---|
Chlorophyceae | 36 | 36 | 988.5 | 1.7 | 72.1 | 163.8 | 140.2 | 189.2 |
Cyanophyceae | 19 | 35 | 1413.4 | 0 | 51.3 | 440.9 | 288.2 | 423.8 |
Bacillariophyceae | 16 | 36 | 2234.9 | 9.9 | 133.1 | 368.2 | 364.0 | 493.7 |
Cryptophyceae | 5 | 35 | 3240.9 | 0 | 296.1 | 436.5 | 427.0 | 548.3 |
Chrysophyceae | 6 | 26 | 341.4 | 0 | 33.9 | 95.0 | 58.0 | 74.9 |
Dynophyceae | 4 | 30 | 3200.0 | 0 | 98.7 | 162.0 | 203.5 | 529.6 |
Euglenophyceae | 3 | 23 | 2059.0 | 0 | 52.3 | 457.2 | 273.5 | 440.0 |
Indexes | Values | |||||
---|---|---|---|---|---|---|
Number of observations | 36 | |||||
F < 6, 29> | 69.06 | |||||
Residual stand error | 0.80 | |||||
R-squared | 0.93 | |||||
Adj R-squared | 0.92 | |||||
p-value | 7.56 × 10−16 *** | |||||
Y variable | X variables | t value | Pr( > |t|) | F-value | Pr( > F) | Regression equation |
δ13CPOM | Chl | 7.58 | 2.37 × 10−8 *** | 57.40 | 2.40 × 10−8 *** | δ13CPOM = 0.14Chl+1.65S −0.10PE+0.49PP −0.28PCh −0.04PCr−28.69 |
S | 6.78 | 1.90 × 10−7 *** | 46.03 | 1.90 × 10−7 *** | ||
PE | −3.07 | 4.58 × 10−3 ** | 9.44 | 4.58 × 10−3 ** | ||
PP | 1.55 | 0.13 | 2.40 | 0.13 | ||
PCh | −2.06 | 0.05 * | 4.23 | 0.05 | ||
PCr | −1.59 | 0.12 | 2.53 | 0.12 |
Indexes | Values | |||||
---|---|---|---|---|---|---|
Number of observations | 36 | |||||
F < 5, 30 > | 10.3 | |||||
Residual stand error | 0.93 | |||||
R-squared | 0.63 | |||||
Adj R-squared | 0.57 | |||||
p-value | 8.08 × 10−6 | |||||
Y variable | X variables | t value | Pr(>|t|) | F-value | Pr(>F) | Regression equation |
δ15NPOM | pH | 3.43 | 1.78 × 10−3 ** | 11.76 | 1.78 × 10−3 ** | δ15NPOM = 1.37pH−0.11PCy +0.44PP−0.49PChr +0.05PE−6.83 |
PCy | −2.80 | 8.84 × 10−3 ** | 7.84 | 8.36 × 10−3 ** | ||
PP | 1.71 | 0.10 | 2.92 | 0.10 | ||
PChr | −2.06 | 0.05 * | 4.24 | 0.05 * | ||
PE | 1.37 | 0.18 | 1.88 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkov, M.S.; Nikulina, V.N.; Tiunov, A.V.; Golubkov, S.M. Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. J. Mar. Sci. Eng. 2020, 8, 959. https://doi.org/10.3390/jmse8120959
Golubkov MS, Nikulina VN, Tiunov AV, Golubkov SM. Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. Journal of Marine Science and Engineering. 2020; 8(12):959. https://doi.org/10.3390/jmse8120959
Chicago/Turabian StyleGolubkov, Mikhail S., Vera N. Nikulina, Alexei V. Tiunov, and Sergey M. Golubkov. 2020. "Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition" Journal of Marine Science and Engineering 8, no. 12: 959. https://doi.org/10.3390/jmse8120959
APA StyleGolubkov, M. S., Nikulina, V. N., Tiunov, A. V., & Golubkov, S. M. (2020). Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. Journal of Marine Science and Engineering, 8(12), 959. https://doi.org/10.3390/jmse8120959