Atmospheric Cold Front-Generated Waves in the Coastal Louisiana
Abstract
1. Introduction
2. Materials and Methods
2.1. Wave Parameter and Wave Spectra Data
2.2. Meteorological Data
2.3. CCMP Wind Vector Analysis Product
2.4. Low-Pass Filtered and Correlation Analysis
3. Results
3.1. Intra-Seasonal Variation of Atmospheric Parameters and Wave
3.2. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez, G.; Conley, D.C. Comparison of HF Radar Fields of Directional Wave Spectra Against In Situ Measurements at Multiple Locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef]
- Penland, S.; Roberts, H.H.; Williams, S.J.; Sallenger, A.H., Jr.; Cahoon, D.R.; Davis, D.W.; Groat, C.G. Coastal land loss in Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 1990, 40, 685–699. [Google Scholar]
- Stone, G.W.; Williams, S.J.; Burruss, A.E. Louisiana’s barrier islands: An evaluation of their geological evolution, morphodynamics and rapid deterioration. J. Coast. Res. 1997, 13, 591–592. [Google Scholar]
- Guo, B.; Subrahmanyam, M.V.; Li, C. Waves on Louisiana Continental Shelf Influenced by Atmospheric Fronts. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Li, C.Y.; Roberts, H.; Stone, G.W.; Weeks, E.; Luo, Y.X. Wind surge and saltwater intrusion in Atchafalaya Bay during on- shore winds prior to cold front passage. Hydrobiologia 2011, 658, 27–39. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J.; Rickman, D. Winter storm impacts on the Chenier plain coast of southwestern Louisiana. Trans. Gulf Coast Assoc. Geol. Soc. 1989, 39, 515–522. [Google Scholar]
- Chaney, P.L. Extratropical Storms of the Gulf of Mexico and Their Effects along the Northern Coast of a Barrier Island: West Ship Island, Mississippi. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 1999. [Google Scholar]
- Li, C.Y.; Huang, W.; Wu, R.H.; Sheremet, A. Weather induced quasi-periodic motions in estuaries and bays: Meteorological tide. China Ocean Eng. 2020, 34, 1–15. [Google Scholar] [CrossRef]
- Maresca, J.W., Jr.; Georges, T.M. Measuring rms wave height and the scalar ocean wave spectrum with HF skywave radar. J. Geophys. Res. Oceans 1980, 85, 2759–2771. [Google Scholar] [CrossRef]
- Doyle, J.D. Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus A 1995, 47, 766–778. [Google Scholar] [CrossRef]
- Dragani, W.C. Numerical experiments on the generation of long ocean waves in coastal waters of the Buenos Aires province, Argentina. Cont. Shelf Res. 2007, 27, 699–712. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, W. A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Nat. Hazards 2011, 59, 1–15. [Google Scholar] [CrossRef]
- Appendini, C.M.; Hernández-Lasheras, J.; Meza-Padilla, R.; Kurczyn, J.A. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico. Clim. Dyn. 2018, 51, 3747–3763. [Google Scholar] [CrossRef]
- Kita, Y.; Waseda, T.; Webb, A. Development of waves under explosive cyclones in the Northwestern Pacific. Ocean Dyn. 2018, 68, 1403–1418. [Google Scholar] [CrossRef]
- Chaichitehrani, N.; Li, C.; Xu, K.; Allahdadi, M.N.; Hestir, E.L.; Keim, B.D. A numerical study of sediment dynamics over Sandy Point dredge pit, west flank of the Mississippi River, during a cold front event. Cont. Shelf Res. 2019, 183, 38–50. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Q. Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Young, I.R.; Vinoth, J.; Zieger, S.; Babanin, A.V. Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res. 2012, 117, 13. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, C.; Uchiyama, Y.; Wang, J.; Yin, X. Multiple-scale variations of wind-generated waves in the Southern California Bight. J. Geophys. Res. Oceans 2018, 123, 9340–9356. [Google Scholar] [CrossRef]
- Stone, G.W.; Kumar, B.P.; Sheremet, A.; Watzke, D. Complex morpho-hydrodynamic response of estuaries and bays to winter storms: North-central Gulf of Mexico. In High Resolution Morphodynamics and Sedimentary Evolution of Estuaries; Springer: Dordrecht, The Netherlands, 2005; pp. 243–267. [Google Scholar]
- Stone, G.W.; Liu, B.; Jose, F. Winter storm and tropical cyclone impacts on the short- term evolution of beaches and barriers along the northeastern Gulf of Mexico. In Proceedings of the Coastal Sediments ’07, New Orleans, LA, USA, 13–17 May 2007; pp. 935–950. [Google Scholar]
- Jose, F.; Kobashi, D.; Stone, G.W. Spectral wave transformation over an elongated sand shoal off south-central Louisiana, USA. J. Coast. Res. 2007, 50, 757–761. [Google Scholar]
- Sorourian, S.; Huang, H.; Li, C.; Justic, D.; Payandeh, A.R. Wave dynamics near Barataria Bay tidal inlets during spring–summer time. Ocean Model. 2020, 147, 101553. [Google Scholar] [CrossRef]
- Zhang, X. Design and Implementation of an Ocean Observing System: WAVCIS (Wave-Current-Surge Information System) and Its Application to the Louisiana Coast. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2003. [Google Scholar]
- WavesMon User’s Guide; P/N 957-6148-00; RD Instruments: San Diego, CA, USA, 2011; p. 74.
- Herbers, T.H.C.; Lentz, S.J. Observing directional properties of ocean swell with an acoustic Doppler current profiler (ADCP). J. Atmos. Ocean. Technol. 2010, 27, 210–225. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Leidner, S.M.; Henderson, J.M.; Atlas, R.; Ardizzone, J.V.; Bloom, S.C. Bloom. A two-dimensional variational analysis method for NSCAT ambiguity removal: Methodology, sensitivity, and tuning. J. Atmos. Ocean. Technol. 2003, 20, 585–605. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data analysis methods in physical oceanography. Estuaries 2001, 80, 638. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Computation of the Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of methods. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Li, C.; Weeks, E.; Milan, B.; Huang, W.; Wu, R. Weather Induced Transport through a Tidal Channel Calibrated by an Unmanned Boat. J. Atmospheric Ocean. Technol. 2018, 35, 261–279. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J., Jr.; Rickman, D. Impact of Cold- Front Passages on Geomorphic Evolution and Sediment Dynamics of the Complex Louisiana Coast. Coastal Sediments ’87, Proceedings of a Specialty Conference, New Orleans, Louisiana, 12–14 May 1987; American Society of Civil Engineers: New York, NY, USA, 1987; pp. 1950–1963. [Google Scholar]
- Pepper, D.A.; Stone, G.W. Hydrodynamic and sedimentary responses to two contrasting winter storms on the inner shelf of the northern gulf of mexico. Mar. Geol. 2004, 210, 43–62. [Google Scholar] [CrossRef]
- Eldeberky, Y. Nonlinear transformation of wave spectra in the nearshore zone. Oceanogr. Lit. Rev. 1997, 4, 297. [Google Scholar]
- Van de Voorde, N.E.; Dinnel, S.P. Observed directional wave spectra during a frontal passage. J. Coast. Res. 1998, 14, 337–346. [Google Scholar]
- Herbers, T.H.C.; Elgar, S.; Guza, R.T. Directional spreading of waves in the nearshore. J. Geophys. Res. Ocean. 1999, 104, 7683–7693. [Google Scholar] [CrossRef]
- Feng, Z.X.; Li, C.Y. Cold-front-induced flushing of the Louisiana Bays. J. Mar. Syst. 2010, 82, 252–264. [Google Scholar] [CrossRef]
- Kobashi, D.; Jose, F.; Stone, G.W. Impacts of fluvial fine sediments and winter storms on a transgressive shoal, off south-central Louisiana, USA. J. Coast. Res. 2007, 23, 858–862. [Google Scholar]
Month | Date (12 A.M. UTC) | Moving Direction | Atmospheric Pressure (hPa) | Type |
---|---|---|---|---|
Jan. | 05 | NW | 1016 | MC storm 1 |
09 | NW | 1020 | MC storm | |
15 | N | 1018 | AS storm 2 | |
18 | W | 1008 | MC storm | |
30 | NW | 1014 | MC storm | |
Feb. | 02 | W | 1014 | MC storm |
06 | W | 1012 | MC storm | |
12 | NW | 1016 | MC storm | |
21 | NW | 1016 | MC storm | |
Mar. | 06 | NW | 1018 | MC storm |
13 | N | 1022 | MC storm | |
16 | NW | 1015 | MC storm | |
21 | N | 1022 | AS storm | |
29 | NW | 1021 | MC storm | |
Apr. | 03 | NE | 1016 | MC storm |
05 | N | 1016 | AS storm | |
09 | N | 1010 | MC storm | |
12 | W | 1007 | MC storm | |
26 | NW | 1016 | MC storm | |
Sep. | 07 | NW | 1010 | MC storm |
10 | N | 1016 | MC storm | |
18 | NE | 1014 | MC storm | |
29 | NW | 1014 | MC storm | |
Oct. | 05 | NW | 1019 | AS storm |
10 | W | 1004 | MC storm | |
12 | NW | 1012 | MC storm | |
14 | W | 1010 | MC storm | |
Nov. | 03 | W | 1014 | MC storm |
08 | N | 1018 | MC storm | |
10 | NE | 1021 | AS storm | |
11 | NW | 1018 | MC storm | |
24 | W | 1006 | MC storm | |
27 | NW | 1011 | MC storm | |
30 | W | 1015 | MC storm | |
Dec. | 07 | NW | 1014 | MC storm |
09 | NW | 1012 | MC storm | |
13 | NW | 1018 | MC storm |
Case | Type | Moving Direction | Characteristics of Parameters | |||||
---|---|---|---|---|---|---|---|---|
I | MC storm | NW | Wind speed (mean; unit: ms−1) | Hs (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.9 | 8.2 | 6.4 | 0.35 | 0.72 | 0.71 | |||
Tp (mean; unit: s) | Spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.5 | 3.3 | 2.9 | 0.3–0.7 | 3–5 | 3–10 | |||
II | AS storm | N | Wind speed (mean; unit: ms−1) | Hs (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
3.2 | 7.5 | 6.1 | 0.22 | 0.58 | 0.63 | |||
Tp (mean) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
3.5 | 2.8 | 2.7 | 0.06–0.08 | 1–5 | 0.3–0.5 | |||
III | MC storm | W | Wind speed (mean; unit: ms−1) | Hs of CSI 3 (CSI 6) (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
5.3 | 9.3 | 4.6 | 0.64(1.19) | 0.68(1.81) | 0.40(0.60) | |||
Tp of CSI 3 (CSI 6) (mean; unit: s) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
5.8(5.6) | 4.8(7.5) | 3.7(5.9) | 1–2.5 (7–12) | 1.5–2.5 (15–25) | 0.4–1 (1.5–2) | |||
IV | MC storm (Tropical Storm) | NW | Wind speed (mean; unit: ms−1) | Hs of CSI 3 (CSI 6) (mean; unit: m) | ||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
7.0 | 7.1 | 4.20 | 0.24(0.90) | 0.34(0.81) | 0.26(0.60) | |||
Tp of CSI 3 (CSI 6) (mean; unit: s) | Wave spectrum density (peak; unit: m2Hz-1cycle−1) | |||||||
prefrontal | Frontal passage | postfrontal | prefrontal | Frontal passage | postfrontal | |||
4.4(6.4) | 3.2(2.9) | 2.8(2.2) | 0.6–1 | 1.5–2 | 0.6–1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Li, C.; Dong, C. Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. J. Mar. Sci. Eng. 2020, 8, 900. https://doi.org/10.3390/jmse8110900
Cao Y, Li C, Dong C. Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. Journal of Marine Science and Engineering. 2020; 8(11):900. https://doi.org/10.3390/jmse8110900
Chicago/Turabian StyleCao, Yuhan, Chunyan Li, and Changming Dong. 2020. "Atmospheric Cold Front-Generated Waves in the Coastal Louisiana" Journal of Marine Science and Engineering 8, no. 11: 900. https://doi.org/10.3390/jmse8110900
APA StyleCao, Y., Li, C., & Dong, C. (2020). Atmospheric Cold Front-Generated Waves in the Coastal Louisiana. Journal of Marine Science and Engineering, 8(11), 900. https://doi.org/10.3390/jmse8110900