# The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Experimental Setup

#### 2.2. Simulation Setup

## 3. Results and Discussion

_{reservoir}) by dividing to the time domain as shown in Equation (4);

_{reservoir}is taken from the results between the 30th and 50th s, which is considered stable for analysis as shown in Figure 11.

^{3}for 60 s running time. This discovery is believed to be due to the accumulation of wave run-up energy, which provided a large platform for gathering the volume of water and, therefore, indirectly increasing the mass momentum of the run-up wave above the ramp shape as expected by European group manual assessment [18], who gave the same reason for the effect of curved dike ramp on wave overtopping.

^{*}is a non-dimensional average overtopping discharge in the reservoir, g is gravity, H

_{s}is significant wave height in (m), R

^{*}is relative crest freeboard and Rr is crest freeboard of front reservoir (m).

^{2}of both shapes shows slightly lower with 52% variation with the trend line. It indicates that more experimental data are required to fit the regression lines of the exponential equation as presented by most of the previous overtopping prediction formulas [18].

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Evans, D.W. Tapchan; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Stagonas, D.; Müller, G.U.; Maravelakis, N.; Magagna, D.; Warbrick, D. Composite seawalls for wave energy conversion: 2D experimental results. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–7 October 2010. [Google Scholar]
- Margheritini, L. R&D towards Commercialization of the Sea Wave Slot Cone Generator (SSG) Overtopping Wave Energy Converter. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2009. [Google Scholar]
- Kofoed, J.P. Optimization of Overtopping Ramps for Utilization of Wave Energy. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2000. [Google Scholar]
- Liu, Z.; Hyun, B.; Jin, J. Computational Analysis of Parabolic Overtopping Wave Energy Convertor. J. Korean Soc. Mar. Environ. Eng.
**2009**, 12, 273–278. [Google Scholar] - Frigaard, P.; Trewers, A.; Kofoed, J.P.; Margheritini, L. Conceptual Design of Wave Plane. DCE Contract Reports No. 38. Aalborg University, Department of Civil Engineering, Division of Water and Soil, Wave Energy Research Group, 2008. Available online: https://vbn.aau.dk/en/publications/conceptual-design-of-wave-plane (accessed on 15 September 2020).
- Fernandez, H.; Iglesias, G.; Carballo, R.; Castro, A.; Fraguela, J.A.; Taveira-Pinto, F.; Sanchez, M. The new wave energy converter WaveCat: Concept and laboratory tests. Mar. Struct.
**2012**, 29, 58–70. [Google Scholar] [CrossRef] - Vicinanza, D.; Contestabile, P.; Norgaard, J.Q.H.; Andersen, T.L. Innovative rubble mound breakwaters for overtopping wave energy conversion. Coast. Eng.
**2014**, 88, 154–170. [Google Scholar] [CrossRef] - WanNik, W.B.; Sulaiman, O.O.; Rozliza, R.; Prawoto, Y.; Muzathik, A.M. Wave Energy Resource Assessment and Review of the Technologies. Int. J. Energy Environ.
**2011**, 2, 1101–1112. [Google Scholar] - Vicinanza, D.; Di Lauro, E.; Contestabile, P.; Gisonni, C.; Lara, J.L.; Losada, I.J. Review of Innovative Harbor Breakwaters for Wave-Energy Conversion. J. Waterw. Port Coast. Ocean Eng.
**2019**, 145, 1–18. [Google Scholar] [CrossRef] - Contestabile, P.; Crispino, G.; Di Lauro, E.; Ferrante, V.; Gisonni, C.; Vicinanza, D. Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead. Renew. Energy
**2020**, 147, 705–718. [Google Scholar] [CrossRef] - Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev.
**2017**, 77, 43–58. [Google Scholar] [CrossRef] - Contestabile, P.; Iuppa, C.; Di Lauro, E.; Cavallaro, L.; Andersen, T.L.; Vicinanza, D. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coast. Eng.
**2017**, 122, 60–74. [Google Scholar] [CrossRef] - Iuppa, C.; Contestabil, P.; Cavallaro, L.; Foti, E.; Vicinanza, D. Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion. Sustainability
**2016**, 8, 1226. [Google Scholar] [CrossRef][Green Version] - Contestabile, P.; Ferrante, V.; Di Lauro, E.; Vicinanza, D. Full-scale prototype of an overtopping breakwater for wave energy conversion. Coast. Eng. Proc.
**2017**, 1, 12. [Google Scholar] [CrossRef][Green Version] - Di Lauro, E.; Lara, J.L.; Maza, M.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Stability analysis of a non-conventional breakwater for wave energy conversion. Coast. Eng.
**2019**, 145, 36–52. [Google Scholar] [CrossRef] - Barbosa, D.V.E.; Santos, A.L.G.; Dos Santos, E.D.; Souza, J.A. Overtopping device numerical study: Openfoam solution verification and evaluation of curved ramps performances. Int. J. Heat Mass Transf.
**2019**, 131, 411–423. [Google Scholar] [CrossRef] - Pullen, T.; Allsop, N.W.H.; Bruce, T.; Kortenhaus, A.; Schüttrumpf, H.; Van der Meer, J.W. Wave Overtopping of Sea Defences and Related Structures: Assessment Report. Environmental Agency; United Kingdom, German Coastal Engineering Research Council (KFKI), Rijkswaterstaat, Netherlands Expertise Network on Flood Protection, 2007. Available online: https://www.researchgate.net/publication/256197945_EurOtop_Wave_Overtopping_of_Sea_Defences_and_Related_Structures_Assessment_Manual (accessed on 15 September 2020).
- Edgar, M.B.; Rodolfo, S.C.; Rafael, S.D.; Xavier, C.C. Wave Energy Conversion Using a Blow-Jet System. In Proceedings of the International Conference in Coastal Engineering 2010, Shanghai, China, 30 June–5 July 2010. [Google Scholar]
- Kofoed, J.P. Wave Overtopping of Marine Structures Utilization of Wave Energy. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2002. [Google Scholar]
- Vicinanza, D.; Margheritini, L.; Kofoed, J.P.; Buccino, M. The SSG wave energy converter: Performance, status and recent developments. Energies
**2012**, 5, 193–226. [Google Scholar] [CrossRef][Green Version] - Jin, J.; Liu, Z.; Hong, K.; Hyun, B. 3D Numerical Investigation on Reservoir System for an Overtopping Wave Energy Convertor. J. Korean Navig. Port Res.
**2012**, 36, 97–103. [Google Scholar] [CrossRef][Green Version] - Nam, B.W.; Shin, S.H.; Hong, K.Y.; Hong, S.W. Numerical Simulation of Wave Flow over the Spiral-Reef Overtopping Device. In Proceedings of the Eighth (2008) ISOPE Pacific/Asia Offshore Mechanics Symposium, Bangkok, Thailand, 10–14 November 2008; pp. 262–267. [Google Scholar]
- Margheritini, L.; Vicinanza, D.; Frigaard, P. SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device. Renew. Energy
**2009**, 34, 1371–1380. [Google Scholar] [CrossRef] - Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Maliki, A.Y. An Investigation of Overtopping Performance onto the Design of Detached Breakwater for Energy Conversion. Master’s Thesis, Univesity Malaysia Terengganu, Terengganu, Malaysia, 2017. [Google Scholar]
- Meer, J.W.V.D.; Stam, J.M. Wave Runup on Smooth and Rock Slopes of Coastal Structures. J. Waterw. Port Coast. Ocean Eng.
**1992**, 118, 534–550. [Google Scholar] [CrossRef] - Di Lauro, E.; Contestabile, P.; Vicinanza, D. Non-conventional overtopping breakwater for energy conversion. In Advances in Renewable Energies Offshore. In 3rd International Conference on Renewable Energies Offshore (RENEW2018), Lisbon, Portugal, 8–10 October 2018; Guedes Soares, C., Ed.; Taylor & Francis Group: London, UK, 2019; pp. 485–493. [Google Scholar]
- Kofoed, J.P.; Frigaard, P.; Friis-Madsen, E.; Sørense, H.C. Prototype testing of the wave energy converter wave dragon. Renew. Energy
**2006**, 31, 181–189. [Google Scholar] [CrossRef][Green Version] - Moghim, M.N.; Boroujeni, R.F.; Tabari, M.M.R. Wave overtopping on reshaping berm breakwaters based on wave momentum flux. Appl. Ocean Res.
**2015**, 53, 23–30. [Google Scholar] [CrossRef] - Hughes, S.A. Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter. Coast. Eng.
**2004**, 51, 1085–1104. [Google Scholar] [CrossRef] - Victor, L.; Troch, P. Wave Overtopping at Smooth Impermeable Steep Slopes with Low Crest Freeboards. J. Waterw. Port Coast. Ocean Eng.
**2012**, 138, 372–385. [Google Scholar] [CrossRef]

**Figure 17.**Image showing that ramp shapes (concave, convex, cubic (-)) and angle at the crest will influence the overtopping discharge on OBREC devices.

**Figure 19.**Comparison of non-dimensional overtopping discharge between cubic and linear shape to the previous studies.

Illustration | References | Name | Ramp Shapes |
---|---|---|---|

[1,19] | Tapered Channel (TAPCHAN) | Linear | |

BLOW JET | |||

[6] | Wave Plane (WP) | Prismatic | |

(V shape) | |||

Linear | |||

[4,20] | Wave Dragon (WD) | Linear | |

Concave | |||

Concave | |||

Ellipse | |||

[3,21] | Sea Slot Cone Generator (SSG) | Linear | |

Concave | |||

Convex | |||

[7] | Wave Catamaran (WAVECAT) | Hull | |

[5,22,23] | Spiral Reef Overtopping Wave Energy Converter (OWEC) | Parabolic | |

[2] | Composite Sea Wall for Energy Conversion (CSWEC) | Linear | |

Wall/Vertical | |||

[13] | Overtopping Breakwater for Energy Conversion (OBREC) | Linear | |

Curve |

Ramp Shape Name | Polynomial Equation | 2D Illustrate | 3D Illustration |
---|---|---|---|

Linear | $\mathrm{f}\left(\mathrm{x}\right)=-0.34\mathrm{x}+3$ | ||

Convex | $\mathrm{f}\left(\mathrm{x}\right)=-0.037{\mathrm{x}}^{2}-0.009\mathrm{x}+3$ | ||

Concave | $\mathrm{f}\left(\mathrm{x}\right)=0.037{\mathrm{x}}^{2}-0.66\mathrm{x}+3$ | ||

Cubic | $\mathrm{f}\left(\mathrm{x}\right)=-0.015{\mathrm{x}}^{3}+0.191{\mathrm{x}}^{2}-0.924\mathrm{x}+3$ | ||

Cubic (-ve) | $\mathrm{f}\left(\mathrm{x}\right)=0.015{\mathrm{x}}^{3}-0.191{\mathrm{x}}^{2}+0.27\mathrm{x}+3$ | ||

Quantic | $\mathrm{f}\left(\mathrm{x}\right)=-0.0025{\mathrm{x}}^{5}+0.0543{\mathrm{x}}^{4}-0.415{\mathrm{x}}^{3}+1.29{\mathrm{x}}^{2}-1.729\mathrm{x}+3$ | ||

Quantic(-ve) | $\mathrm{f}\left(\mathrm{x}\right)=0.0025{\mathrm{x}}^{5}-0.0543{\mathrm{x}}^{4}+0.415{\mathrm{x}}^{3}-1.29{\mathrm{x}}^{2}+1.05\mathrm{x}+3$ |

Data Period | Period T_{p} (s) | Significant Wave Height H_{s} (m) |
---|---|---|

Average wave per year (R2) | 6.67 | 1.245 |

Average Northeast monsoon (R4) | 7.74 | 1.76 |

Average Southeast monsoon (R1) | 4.99 | 0.79 |

Average max wave per year (R3) | 7.13 | 1.53 (H_{max}) |

Shape Type | Simulation | Experiment | Descriptions |
---|---|---|---|

Linear | Medium overtopping | ||

Concave | Medium overtopping | ||

Convex | Medium overtopping | ||

Cubic(-ve) | Higher overtopping | ||

Cubic | Low overtopping | ||

Quantic(-ve) | Low overtopping | ||

Quantic | Low overtopping |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Musa, M.A.; Roslan, M.F.; Ahmad, M.F.; Muzathik, A.M.; Mustapa, M.A.; Fitriadhy, A.; Mohd, M.H.; Rahman, M.A.A. The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion. *J. Mar. Sci. Eng.* **2020**, *8*, 875.
https://doi.org/10.3390/jmse8110875

**AMA Style**

Musa MA, Roslan MF, Ahmad MF, Muzathik AM, Mustapa MA, Fitriadhy A, Mohd MH, Rahman MAA. The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion. *Journal of Marine Science and Engineering*. 2020; 8(11):875.
https://doi.org/10.3390/jmse8110875

**Chicago/Turabian Style**

Musa, M. A., M. F. Roslan, M. F. Ahmad, A. M. Muzathik, M. A. Mustapa, A. Fitriadhy, M. H. Mohd, and M. A. A. Rahman. 2020. "The Influence of Ramp Shape Parameters on Performance of Overtopping Breakwater for Energy Conversion" *Journal of Marine Science and Engineering* 8, no. 11: 875.
https://doi.org/10.3390/jmse8110875