Detection and Characterization of Meteotsunamis in the Gulf of Genoa
Abstract
:1. Introduction
2. Methods and Data Analysis
2.1. The Available Data-Set
2.2. Sea-Level Variability in the Gulf of Genoa
2.3. Event Detection by Time-Frequency Analysis
2.4. Earthquakes and Tsunami-like Oscillations
2.5. Wavelet Analysis
3. Results and Discussion
3.1. Temporal Evolution Patterns’ Characterization
3.2. Event Description
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernard, E.; Titov, V. Evolution of tsunami warning systems and products. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140371. [Google Scholar] [CrossRef] [PubMed]
- Maramai, A.; Brizuela, B.; Graziani, L. The Euro-Mediterranean Tsunami Catalogue. Ann. Geophys. 2014. [Google Scholar] [CrossRef]
- Masina, M.; Archetti, R.; Besio, G.; Lamberti, A. Tsunami taxonomy and detection from recent Mediterranean tide gauge data. Coast. Eng. 2017, 127, 145–169. [Google Scholar] [CrossRef]
- Tinti, S.; Armigliato, A.; Bortolucci, E.; Piatanesi, A. Identification of the source fault of the 1908 Messina earthquake through tsunami modelling. Is it a possible task? Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 1999, 24, 417–421. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Necmioglu, O.; Ishibe, T.; Yalciner, A.C. Bodrum–Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: A test for the Mediterranean tsunami warning system. Geosci. Lett. 2017, 4, 31. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Monserrat, S. Meteorological tsunamis near the Balearic and Kuril Islands: Descriptive and statistical analysis. Nat. Hazards 1996, 13, 55–90. [Google Scholar] [CrossRef]
- Monserrat, S.; Vilibić, I.; Rabinovich, A.B. Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazards Earth Syst. Sci. 2006, 6, 1035–1051. [Google Scholar] [CrossRef]
- Thomson, R.E.; Rabinovich, A.B.; Fine, I.V.; Sinnott, D.C.; McCarthy, A.; Sutherland, N.A.S.; Neil, L.K. Meteorological tsunamis on the coasts of British Columbia and Washington. Phys. Chem. Earth Parts A/B/C 2009, 34, 971–988. [Google Scholar] [CrossRef]
- Pattiaratchi, C.B.; Sarath Wijeratne, E.M. Tide Gauge Observations of 2004–2007 Indian Ocean Tsunamis from Sri Lanka and Western Australia. Pure Appl. Geophys. 2009, 166, 233–258. [Google Scholar] [CrossRef]
- Proudman, J. The Effects on the Sea of Changes in Atmospheric Pressure. Geophys. J. Int. 1929, 2, 197–209. [Google Scholar] [CrossRef]
- Hibiya, T.; Kajiura, K. Origin of theAbiki phenomenon (a kind of seiche) in Nagasaki Bay. J. Oceanogr. Soc. Japan 1982, 38, 172–182. [Google Scholar] [CrossRef]
- Greenspan, H.P. The generation of edge waves by moving pressure distributions. J. Fluid Mech. 1956, 1, 574–592. [Google Scholar] [CrossRef]
- Monserrat, S.; Rabinovich, A.B.; Casas, B. On the reconstruction of the transfer function for atmospherically generated seiches. Geophys. Res. Lett. 1998, 25, 2197–2200. [Google Scholar] [CrossRef] [Green Version]
- Pattiaratchi, C.B.; Wijeratne, E.M.S. Are meteotsunamis an underrated hazard? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilibić, I. Numerical study of the Middle Adriatic coastal waters’ sensitivity to the various air pressure travelling disturbances. Ann. Geophys. 2005, 23, 3569–3578. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I.; Belušić, D. Source of the 2007 Ist meteotsunami (Adriatic Sea). J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I.; Fine, I. Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments: Northern Adriatic meteotsunamis. J. Geophys. Res. Oceans 2015, 120, 2993–3010. [Google Scholar] [CrossRef]
- Vilibić, I.; Šepić, J. Destructive meteotsunamis along the eastern Adriatic coast: Overview. Phys. Chem. Earth Parts A/B/C 2009, 34, 904–917. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I. The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2011, 11, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Vilibić, I.; Šepić, J.; Rabinovich, A.B.; Monserrat, S. Modern Approaches in Meteotsunami Research and Early Warning. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Denamiel, C.; Šepić, J.; Ivanković, D.; Vilibić, I. The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component. Ocean Model. 2019, 135, 71–93. [Google Scholar] [CrossRef]
- Jansa, A.; Monserrat, S.; Gomis, D. The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv. Geosci. 2007, 12, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Vilibić, I.; Monserrat, S.; Rabinovich, A.; Mihanović, H. Numerical Modelling of the Destructive Meteotsunami of 15 June, 2006 on the Coast of the Balearic Islands. Pure Appl. Geophys. 2008, 165, 2169–2195. [Google Scholar] [CrossRef]
- Marcos, M.; Monserrat, S.; Medina, R.; Orfila, A.; Olabarrieta, M. External forcing of meteorological tsunamis at the coast of the Balearic Islands. Phys. Chem. Earth Parts A/B/C 2009, 34, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Renault, L.; Vizoso, G.; Jansá, A.; Wilkin, J.; Tintoré, J. Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models: TOWARD THE METEOTSUNAMIS PREDICTABILITY. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Orlić, M. About a possible occurrence of the Proudman resonance in the Adriatic. Prelim. Commun. 1980, 16, 79–88. [Google Scholar]
- Orlić, M.; Belušić, D.; Janeković, I.; Pasarić, M. Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Colucci, P.; Michelato, A. An approach to the study of the “Marrubbio” phenomenon. Boll. Di Geofis. Teor. Ed Appl. 1976, 19, 3–10. [Google Scholar]
- Candela, J.; Mazzola, S.; Sammari, C.; Limeburner, R.; Lozano, C.J.; Patti, B.; Bonanno, A. The “Mad Sea” Phenomenon in the Strait of Sicily. J. Phys. Oceanogr. 1999, 29, 2210–2231. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I.; Rabinovich, A.; Tinti, S. Meteotsunami (“Marrobbio”) of 25–26 June 2014 on the Southwestern Coast of Sicily, Italy. Pure Appl. Geophys. 2018, 175, 1573–1593. [Google Scholar] [CrossRef]
- Gravili, D.; Napolitano, E.; Pierini, S. Barotropic aspects of the dynamics of the Gulf of Naples (Tyrrhenian Sea). Cont. Shelf Res. 2001, 21, 455–471. [Google Scholar] [CrossRef]
- Bressan, L.; Tinti, S. Statistical properties of coastal long waves analysed through sea-level time-gradient functions: Exemplary analysis of the Siracusa, Italy, tide-gauge data. Nat. Hazards Earth Syst. Sci. 2016, 16, 223–237. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I.; Lafon, A.; Macheboeuf, L.; Ivanović, Z. High-frequency sea level oscillations in the Mediterranean and their connection to synoptic patterns. Prog. Oceanogr. 2015, 137, 284–298. [Google Scholar] [CrossRef]
- Caloi, P.; Spadea, M.C. Studio preliminare sulle oscillazioni libere del Golfo di Genova. Ann. Geophys. 2011, 1, 107–117. [Google Scholar]
- Papa, L. A numerical verification of a shelf oscillation in the Gulf of Genoa. Oceanol. Acta 1981, 4, 11–12. [Google Scholar]
- Denamiel, C.; Šepić, J.; Vilibić, I. Impact of Geomorphological Changes to Harbor Resonance During Meteotsunamis: The Vela Luka Bay Test Case. Pure Appl. Geophys. 2018, 175, 3839–3859. [Google Scholar] [CrossRef]
- Canepa, E.; Pensieri, S.; Bozzano, R.; Faimali, M.; Traverso, P.; Cavaleri, L. The ODAS Italia 1 buoy: More than forty years of activity in the Ligurian Sea. Prog. Oceanogr. 2015, 135, 48–63. [Google Scholar] [CrossRef]
- Bozzano, R.; Pensieri, S.; Pensieri, L.; Cardin, V.; Brunetti, F.; Bensi, M.; Petihakis, G.; Tsagaraki, T.M.; Ntoumas, M.; Podaras, D.; et al. The M3A network of open ocean observatories in the Mediterranean Sea. In Proceedings of the 2013 MTS/IEEE OCEANS—Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–10. [Google Scholar]
- Ravaioli, M.; Bergami, C.; Riminucci, F.; Langone, L.; Cardin, V.; Di Sarra, A.; Aracri, S.; Bastianini, M.; Bensi, M.; Bergamasco, A.; et al. The RITMARE Italian Fixed-Point Observatory Network (IFON) for marine environmental monitoring: A case study. J. Oper. Oceanogr. 2016, 9, s202–s214. [Google Scholar] [CrossRef]
- Istituto Idrografico della Marina Tavole Di Marea E Delle Correnti Di Marea Venezia E Stretto Di Messina; Istituto Idrografico della Marina: Genova, Italy, 2014; p. 3133.
- Papa, L. A numerical and statistical investigation of a seiche oscillation of the Ligurian Sea. Deutsch. Hydrogr. Z. 1981, 34, 15–25. [Google Scholar] [CrossRef]
- Papa, L. A short period rotating seiche of the Ligurian SEa. Oceanol. Acta 1984, 7, 1–4. [Google Scholar]
- Guedes Soares, C.; Cherneva, Z. Spectrogram analysis of the time–frequency characteristics of ocean wind waves. Ocean Eng. 2005, 32, 1643–1663. [Google Scholar] [CrossRef]
- Picco, P.; Cappelletti, A.; Sparnocchia, S.; Schiano, M.E.; Pensieri, S.; Bozzano, R. Upper layer current variability in the Central Ligurian Sea. Ocean Sci. 2010, 6, 825–836. [Google Scholar] [CrossRef]
- Picco, P.; Demarte, M.; D’Epifanio, R.; Guideri, M.; Repetti, L.; Morucci, S.; Ferla, M. Detection of short-period sea level oscillations in the Gulf of Genoa. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–4. [Google Scholar]
- Rabinovich, A.B. Spectral analysis of tsunami waves: Separation of source and topography effects. J. Geophys. Res. Oceans 1997, 102, 12663–12676. [Google Scholar] [CrossRef]
- Eva, C.; Rabinovich, A.B. The February 23, 1887 tsunami recorded on the Ligurian Coast, western Mediterranean. Geophys. Res. Lett. 1997, 24, 2211–2214. [Google Scholar] [CrossRef]
- Pelinovsky, E.; Kharif, C.; Riabov, I.; Francius, M. Study of tsunami propagation in the Ligurian Sea. Nat. Hazards Earth Syst. Sci. 2001, 1, 195–201. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography, 2nd and rev. ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2001; ISBN 978-0-444-50756-3. [Google Scholar]
- Keller, W. Wavelets in Geodesy and Geodynamics; De Gruyter: Berlin, Germany, 2008; ISBN 978-3-11-019818-8. [Google Scholar]
- Mallat, S.G. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-466605-4. [Google Scholar]
- Lilly, J.M.; Olhede, S.C. Higher-Order Properties of Analytic Wavelets. IEEE Trans. Signal Process. 2009, 57, 146–160. [Google Scholar] [CrossRef]
- Incardone, S. Hydrographic Data Analysis: Wavelet Filter Applications. In Post Graduate Master Degree on Marine Geomatics, Advanced Technologies Applied to Marine Environment, University of the Study of Genoa; University of Genoa: Genoa, Italy, 2017. [Google Scholar]
- Papa, L. The free oscillations of the Ligurian Sea computed by the H-N method. Deutsch. Hydrogr. Z. 1977, 30, 81–90. [Google Scholar] [CrossRef]
- Liberato, M.L.R.; Pinto, J.G.; Trigo, R.M.; Ludwig, P.; Ordóñez, P.; Yuen, D.; Trigo, I.F. Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci. 2013, 13, 2239–2251. [Google Scholar] [CrossRef] [Green Version]
- Pattiaratchi, C.; Wijeratne, E.M.S. Observations of meteorological tsunamis along the south-west Australian coast. Nat. Hazards 2014, 74, 281–303. [Google Scholar] [CrossRef] [Green Version]
- Parodi, A.; Gallus, W.; Maugeri, M.; Turato, B. Observational and modelling study of a major downburst event in Liguria: The Portofino case on 14 October 2016. In Proceedings of the Geophysical Research Abstracts; EGU, Vienna, Austria, 8–13 April 2018; Volume 20. [Google Scholar]
- Bellantone, P.; Corazza, M.; Grieco, L.; Turato, B.; Soatto, F.; Giannoni, F. Rapporto Di Evento Meteorologico Del 13-14/10/2016; ARPAL: Genoa, Italy, 2017; p. 21. [Google Scholar]
- Belušić, D.; Grisogono, B.; Klaić, Z.B. Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Belušić, D.; Strelec Mahović, N. Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Phys. Chem. Earth Parts A/B/C 2009, 34, 918–927. [Google Scholar] [CrossRef]
- Šepić, J.; Vilibić, I.; Rabinovich, A.B.; Monserrat, S. Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K. Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Nat. Hazards Earth Syst. Sci. 2010, 10, 2599–2610. [Google Scholar] [CrossRef] [Green Version]
- Dragani, W.C.; D’Onofrio, E.E.; Oreiro, F.; Alonso, G.; Fiore, M.; Grismeyer, W. Simultaneous meteorological tsunamis and storm surges at Buenos Aires coast, southeastern South America. Nat. Hazards 2014, 74, 269–280. [Google Scholar] [CrossRef]
- Perez, I.; Walter, D. Spectral variability in high frequency in sea level and atmospheric pressure on Buenos Aires Coast, Argentina. Braz. J. Oceanogr. 2017, 65, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Pensieri, S.; Schiano, M.; Picco, P.; Tizzi, M.; Bozzano, R. Analysis of the Precipitation Regime over the Ligurian Sea. Water 2018, 10, 566. [Google Scholar] [CrossRef]
- Sallenger, A.H.J.; Jeffrey, H.; List, J.H.; Gelfenbaum, G.; Stumpf, R.P.; Hansen, M. Large Wave at Daytona Beach, Florida, Explained as a Squall-line Surge. J. Coast. Res. 1995, 11, 1383–1388. [Google Scholar]
- Buzzi, A.; Tibaldi, S. Cyclogenesis in the lee of the Alps: A case study. Q. J. R. Meteorol. Soc. 1978, 104, 271–287. [Google Scholar] [CrossRef]
- Trigo, I.F.; Bigg, G.R.; Davies, T.D. Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 2002, 130, 549–569. [Google Scholar] [CrossRef]
Year | Missing Data |
---|---|
2009 | 93 |
2010 | 273 |
2011 | 6887 |
2012 | 2380 |
2013 | 79 |
2014 | 2262 |
2015 | 870 |
2016 | 0 |
Class | n |
---|---|
0–0.1 | 23198 |
0.1–0.2 | 108 |
0.2–0.3 | 26 |
0.3–0.4 | 13 |
0.4–0.5 | 3 |
0.5–0.6 | 0 |
0.6–0.7 | 1 |
0.7–0.8 | 2 |
0.8–0.9 | 0 |
0.9–1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picco, P.; Schiano, M.E.; Incardone, S.; Repetti, L.; Demarte, M.; Pensieri, S.; Bozzano, R. Detection and Characterization of Meteotsunamis in the Gulf of Genoa. J. Mar. Sci. Eng. 2019, 7, 275. https://doi.org/10.3390/jmse7080275
Picco P, Schiano ME, Incardone S, Repetti L, Demarte M, Pensieri S, Bozzano R. Detection and Characterization of Meteotsunamis in the Gulf of Genoa. Journal of Marine Science and Engineering. 2019; 7(8):275. https://doi.org/10.3390/jmse7080275
Chicago/Turabian StylePicco, Paola, Maria Elisabetta Schiano, Silvio Incardone, Luca Repetti, Maurizio Demarte, Sara Pensieri, and Roberto Bozzano. 2019. "Detection and Characterization of Meteotsunamis in the Gulf of Genoa" Journal of Marine Science and Engineering 7, no. 8: 275. https://doi.org/10.3390/jmse7080275
APA StylePicco, P., Schiano, M. E., Incardone, S., Repetti, L., Demarte, M., Pensieri, S., & Bozzano, R. (2019). Detection and Characterization of Meteotsunamis in the Gulf of Genoa. Journal of Marine Science and Engineering, 7(8), 275. https://doi.org/10.3390/jmse7080275