Sea Waves Transport of Inertial Micro-Plastics: Mathematical Model and Applications
Abstract
:1. Introduction
2. Methods
2.1. Wave Model and Plastic Particle Transport Model
2.2. Description of the Numerical Experiments
2.3. Climatology of the Sea State and Selection of Wave Parameters for the Numerical Experiments
3. Results
3.1. Prediction of the Maximum Particle Horizontal Displacement
3.2. Influence of Stokes Drift and Inertia on the Settling Velocities of the Particles
3.3. Vertical Distribution of Plastic Particles
4. Discussion & Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; Vom Saal, F.S. Our Plastic Age. Philos. Trans. R. Soc. B 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.C.; Rodic, L.; Modak, P.; Soos, R.; Carpintero, A.; Velis, K.; Iyer, M.; Simonett, O. Global Waste Management Outlook; UNEP: Nairobi, Kenya, 2015. [Google Scholar]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Kershaw, P.; Rochman, C. Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment. In Reports and studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Eng No. 93; International Maritime Organization: London, UK, 2015. [Google Scholar]
- Van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; Van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A global inventory of small floating plastic debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Bec, J. Fractal clustering of inertial particles in random flows. Phys. Fluids 2003, 15, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- Maximenko, N.; Hafner, J.; Niiler, P. Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 2012, 65, 51–62. [Google Scholar] [CrossRef]
- Zambianchi, E.; Trani, M.; Falco, P. Lagrangian transport of marine litter in the Mediterranean Sea. Front. Environ. Sci. 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Ballent, A.; Purser, A.; de Jesus Mendes, P.; Pando, S.; Thomsen, L. Physical transport properties of marine microplastic pollution. Biogeosci. Discuss. 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D.; Law, K. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Kukulka, T.; Brunner, K. Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions. J. Geophys. Res. Oceans 2015, 120, 3837–3858. [Google Scholar] [CrossRef]
- Isobe, A.; Kubo, K.; Tamura, Y.; Kako, S.; Nakashima, E.; Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 2014, 89, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Liubartseva, S.; Coppini, G.; Lecci, R.; Creti, S. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Mar. Pollut. Bull. 2016, 103, 115–127. [Google Scholar] [CrossRef]
- Zhang, H. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 2017, 199, 74–86. [Google Scholar] [CrossRef]
- Liubartseva, S.; Coppini, G.; Lecci, R.; Clementi, E. Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull. 2018, 129, 151–162. [Google Scholar] [CrossRef]
- Ourmieres, Y.; Mansui, J.; Molcard, A.; Galgani, F.; Poitou, I. The boundary current role on the transport and stranding of floating marine litter: The French Riviera case. Cont. Shelf Res. 2018, 155, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Jalón-Rojas, I.; Wang, X.H.; Fredj, E. On the importance of a three-dimensional approach for modelling the transport of neustic microplastics. Ocean Sci. 2019, 15, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Enders, K.; Lenz, R.; Stedmon, C.A.; Nielsen, T.G. Abundance, size and polymer composition of marine microplastics greater then 10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015, 100, 70–81. [Google Scholar] [CrossRef]
- Kooi, M.; van Nes, E.H.; Scheffer, M.; Koelmans, A.A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.; Lyons, B.P.; Galloway, T.S.; Lewis, C.N. The role of marine snows in microplastic fate and bioavailability. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris; University of Washington Tacoma: Tacoma, WA, USA, 2009. [Google Scholar]
- Rios, L.M.; Moore, C.; Jones, P.R. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull. 2007, 54, 1230–1237. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef]
- Peregrine, D. Interaction of water waves and currents. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1976; Volume 16, pp. 9–117. [Google Scholar]
- Maxey, M.R.; Riley, J.J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 1983, 26, 883–889. [Google Scholar] [CrossRef]
- Santamaria, F.; Boffetta, G.; Afonso, M.M.; Mazzino, A.; Onorato, M.; Pugliese, D. Stokes drift for inertial particles transported by water waves. EPL (Europhys. Lett.) 2013, 102, 14003. [Google Scholar] [CrossRef] [Green Version]
- DiBenedetto, M.H.; Ouellette, N.T.; Koseff, J.R. Transport of anisotropic particles under waves. J. Fluid Mech. 2018, 837, 320–340. [Google Scholar] [CrossRef]
- Khatmullina, L.; Isachenko, I. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 2017, 114, 871–880. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Developing and validating a forecast/hindcast system for the Mediterranean Sea. J. Coast. Res. 2013, 65, 1551–1556. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Performance evaluation of WavewatchIII in the Mediterranean Sea. Ocean Model. 2015, 90, 82–94. [Google Scholar] [CrossRef]
- LeMéhauté, B. An Introduction to Hydrodynamics and Water Waves; Springer: Berlin, Germany, 1976. [Google Scholar]
- Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 2016, 108, 105–112. [Google Scholar] [CrossRef]
- Kooi, M.; Reisser, J.; Slat, B.; Ferrari, F.F.; Schmid, M.S.; Cunsolo, S.; Brambini, R.; Noble, K.; Sirks, L.A.; Linders, T.E.; et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 2016, 6, 33882. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Cahl, D.L.; Crosby, S.C.; Voulgaris, G. Bulk versus spectral wave parameters: Implications on stokes drift estimates, regional wave modeling, and HF radars applications. J. Phys. Oceanogr. 2017, 47, 1413–1431. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, D.; Kowalski, N.; Waniek, J.J. Effects of biofouling on the sinking behavior of microplastics. Environ. Res. Lett. 2017, 12, 124003. [Google Scholar] [CrossRef] [Green Version]
- Deike, L.; Pizzo, N.; Melville, W.K. Lagrangian transport by breaking surface waves. J. Fluid Mech. 2017, 829, 364–391. [Google Scholar] [CrossRef] [Green Version]
- Pizzo, N.; Melville, W.K.; Deike, L. Lagrangian Transport by Nonbreaking and Breaking Deep-Water Waves at the Ocean Surface. J. Phys. Oceanogr. 2019, 49, 983–992. [Google Scholar] [CrossRef]
Exp. | a (m) | T (s) | (m/s) | h (m) | (m) | (s) | # of Runs | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 4 | 0.013 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
2 | 0.5 | 4 | 0.006 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
3 | 0.75 | 4 | 0.01 | 0 | 300 | 100–2000 | 0.95 | 1.03 | 0.0008–0.32 | 20 |
4 | 0.75 | 4 | 0.01 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
5 | 1.25 | 4 | 0.016 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
6 | 0.32 | 8 | 0.001 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
7 | 0.63 | 8 | 0.002 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
8 | 0.95 | 8 | 0.003 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
9 | 1.26 | 8 | 0.004 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
10 | 1.57 | 8 | 0.005 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
11 | 2.2 | 8 | 0.007 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
12 | 0.17 | 6 | 0.001 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
13 | 0.35 | 6 | 0.002 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
14 | 0.53 | 6 | 0.003 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
15 | 0.71 | 6 | 0.004 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
16 | 0.88 | 6 | 0.005 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
17 | 1.23 | 6 | 0.007 | 0 | 300 | 100–2000 | 1.05–1.25 | 0.86–0.97 | 0.001–0.34 | 40 |
18 | 0.26 | 6 | 0.001 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
19 | 0.53 | 6 | 0.003 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
20 | 0.8 | 6 | 0.005 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
21 | 1.05 | 6 | 0.006 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
22 | 1.32 | 6 | 0.007 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
23 | 1.59 | 6 | 0.009 | 0 | 300 | 100–2000 | 1.05 | 0.97 | 0.0009–0.34 | 20 |
24 | 1.59 | 6 | 0.009 | 0.2 | 300 | 200–2000 | 1.05 | 0.97 | 0.0034–0.34 | 10 |
25 | 1.59 | 6 | 0.009 | 0 | 20 | 200–2000 | 1.05 | 0.97 | 0.0034–0.34 | 10 |
rand1 | 0.5 | 4 | 0.006 | 0 | 300 | 100–500 | 0.95–1.15 | 0.91–1.03 | 0.0009–0.02 | 1 |
rand2 | 0.75 | 4 | 0.01 | 0 | 300 | 100–500 | 0.95–1.15 | 0.91–1.03 | 0.0009–0.02 | 1 |
rand3 | 1 | 4 | 0.013 | 0 | 300 | 100–500 | 0.95–1.15 | 0.91–1.03 | 0.0009–0.02 | 1 |
rand4 | 1.25 | 4 | 0.016 | 0 | 300 | 100–500 | 0.95–1.15 | 0.91–1.03 | 0.0009–0.02 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stocchino, A.; De Leo, F.; Besio, G. Sea Waves Transport of Inertial Micro-Plastics: Mathematical Model and Applications. J. Mar. Sci. Eng. 2019, 7, 467. https://doi.org/10.3390/jmse7120467
Stocchino A, De Leo F, Besio G. Sea Waves Transport of Inertial Micro-Plastics: Mathematical Model and Applications. Journal of Marine Science and Engineering. 2019; 7(12):467. https://doi.org/10.3390/jmse7120467
Chicago/Turabian StyleStocchino, Alessandro, Francesco De Leo, and Giovanni Besio. 2019. "Sea Waves Transport of Inertial Micro-Plastics: Mathematical Model and Applications" Journal of Marine Science and Engineering 7, no. 12: 467. https://doi.org/10.3390/jmse7120467
APA StyleStocchino, A., De Leo, F., & Besio, G. (2019). Sea Waves Transport of Inertial Micro-Plastics: Mathematical Model and Applications. Journal of Marine Science and Engineering, 7(12), 467. https://doi.org/10.3390/jmse7120467