Basic Heat Exchanger Performance Evaluation Method on OTEC
Abstract
:1. Introduction
2. Heat Exchanger Performance and Power Output
2.1. Maximum Power Output of a Heat Engine
2.2. Relationship between Net Power and Heat Exchanger Performance
3. Basic Performance Evaluation Method
3.1. Basic Heat Exchanger Performance Evaluation Index
3.2. Assumptions and Evaluation Procedure
- To make the approximate formula of the overall heat transfer coefficient and pressure drop a function of the mean velocity of seawater by experimentation, which is shown in Figure 4a:
- To calculate the maximum net power output per heat transfer area, which are represented by Equation (20), and the optimum mean velocity of seawater, which maximizes the net power output, in the design seawater temperature condition shown in Figure 4b,
- To calculate ω represented by Equation (23) as the performance index for an OTEC heat exchanger.
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martin, B.; Okamura, S.; Nakamura, Y.; Yasunaga, T.; Ikegami, Y. Status of the “Kumejima Model” for advanced deep seawater utilization. In Proceedings of the IEE Conference Publications, Kobe, Japan, 6–8 October 2016; pp. 211–216. [Google Scholar]
- Takahashi, M. DOW: Deep Ocean Water as Our Next Natural Resource; Terra Scientific Publishing Company: Tokyo, Japan, 2000; ISBN 488704125x. [Google Scholar]
- Claude, G. Power from the tropical sea. Mech. Eng. 1930, 52, 1039–1044. [Google Scholar]
- Avery, H.W.; Wu, C. Renewable Energy from the Ocean; Oxford University Press: Oxford, UK, 1994; pp. 90–151. ISBN 9780195071993. [Google Scholar]
- Kalina, A.I. Generation of Energy by Means of a Working Fluid, and Regeneration of a Working Fluid. U.S. Patents 4346561, 31 August 1982. [Google Scholar]
- Marston, C.H. Parametric analysis of the Kalina cycle. Trans. ASME J. Eng. Gas Turb. Power 1990, 112, 107–116. [Google Scholar] [CrossRef]
- Uehara, U.; Ikegami, Y.; Nishida, T. OTEC System Using a New Cycle with Absorption and Extraction Process; Physical Chemistry of Aqueous Systems, Begell House, Inc.: Danbury, CT, USA, 1995; pp. 862–869. [Google Scholar]
- Anderson, J.H.; Anderson, J.H., Jr. Thermal power form seawater. Mech. Eng. 1966, 88, 41–46. [Google Scholar]
- Morisaki, T.; Ikegami, Y. Maximum power of a multistage Rankine cycle in low-grade thermal energy conversion. Appl. Ther. Eng. 2014, 69, 78–85. [Google Scholar] [CrossRef]
- Sun, F.; Ikegami, Y.; Arima, H.; Zhou, W. Performance analysis of the low-temperature solar-boosted power generation system—Part I: Comparison between Kalina solar system and Rankine solar system. Trans. ASME J. Sol. Energy Eng. 2013, 135. [Google Scholar] [CrossRef]
- Sun, F.; Ikegami, Y.; Arima, H.; Zhou, W. Performance analysis of the low-temperature solar-boosted power generation system—Part II: Thermodynamic characteristics of the Kalina solar system. Trans. ASME J. Sol. Energy Eng. 2013, 135. [Google Scholar] [CrossRef]
- Bombarda, P.; Invernizzi, C.; Gaia, M. Performance analysis of OTEC plants with multilevel organic Rankine cycle and solar hybridization. Trans. ASME J. Eng. Gas Turb. Power 2013, 135. [Google Scholar] [CrossRef]
- Sinama, F.; Martins, M.; Journoud, A.; Marc, O.; Lucas, F. Thermodynamic analysis and optimization of a 10 MW OTEC Rankine cycle in Reunion Island with the equivalent Gibbs system method and generic optimization program. Appl. Ocean Res. 2015, 53, 54–66. [Google Scholar] [CrossRef]
- Johnson, D.H. The exergy of the ocean thermal resource and analysis of second-law efficiencies of idealized ocean thermal energy conversion power cycles. Energy 1983, 8, 927–946. [Google Scholar] [CrossRef]
- Owens, W.L.; Trimble, L.C. Mini-OTEC operational results. Trans. ASME J. Sol. Energy Eng. 1981, 103, 233–240. [Google Scholar] [CrossRef]
- Mitsui, T.; Ito, F.; Seya, Y.; Nakamoto, Y. Outline of the 100 kW OTEC pilot plant in the Republic of Nauru. IEEE Trans. Power App. Syst. 1983, PAS-102, 3167–3171. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y.; Monde, M. Performance test of OTEC with ammonia/water as working fluid using shell and plate type heat exchangers (effect of heat source temperature and flow rate). Trans. JAME B 2008, 74, 445–452. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics; Wiley: New York, NY, USA, 1998; ISBN 0471677639. [Google Scholar]
- Ibrahim, O.M. Effect of irreversibility and economics on the performance of a heat engine. Trans. ASME J. Sol. Energy Eng. 1992, 114, 267–271. [Google Scholar] [CrossRef]
- Wu, C. Performance bound for real OTEC heat engines. Ocean Eng. 1987, 14, 349–354. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Application of finite-time thermodynamics for evaluation method on heat engine. Energy Procedia 2017, 129, 995–1001. [Google Scholar] [CrossRef]
- Ikegami, Y.; Bejan, A. On the thermodynamic optimization of power plants with heat transfer and fluid flow irreversibility. Trans. ASME J. Sol. Energy Eng. 1998, 120, 139–144. [Google Scholar] [CrossRef]
- Owens, W.L. Optimization of closed-cycle OTEC system. In Proceedings of the ASME/JSME Thermal Engineering Joint Conference, Honolulu, HI, USA, 20–24 March 1980; Volume 2, pp. 227–239. [Google Scholar]
- Uehara, H.; Ikegami, Y. Optimization of a closed-cycle OTEC system. Trans. ASME J. Sol. Energy Eng. 1990, 112, 247–256. [Google Scholar] [CrossRef]
- Ikegami, Y.; Uehara, H. Performance analysis of OTEC plants at off-design conditions: Ammonia as working fluid. Trans. ASME J. Sol. Energy Eng. 1992, G0656A, 633–638. [Google Scholar]
- Novikov, I.I. The efficiency of atomic power stations. J. Nuclear Energy II 1958, 7, 125–128. [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Chen, I.; Yan, Z.; Lin, G.; Andersen, B. On the Curzon-Ahlborn efficiency and its connection with the efficiencies of the real heat engines. Energy Convers. Manag. 2001, 42, 173–181. [Google Scholar] [CrossRef]
- Jones, J.B.; Hawkins, G.A. Engineering Thermodynamics an Introductory Textbook, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986; p. 578. ISBN 0471812021. [Google Scholar]
- Wilson, E.E. A basis for rational design of heat transfer apparatus. Trans. ASME J. Heat Trans. 1915, 37, 47–82. [Google Scholar]
- Kushibe, M.; Ikegami, Y.; Monde, M.; Uehara, H. Evaporation heat transfer of ammonia and pressure drop of warm water for plate type evaporator. Trans. JSRAE 2005, 22, 403–415. [Google Scholar]
- Nakaoka, T.; Urata, K.; Ikegami, Y.; Nishida, T.; Ohhara, J.; Horita, M. Heat transfer coefficient and pressure drop of plate-type condenser using OTEC (using NH3/H2O as working fluid). OTEC 2009, 15, 1–8. [Google Scholar]
- Uehara, H.; Nakaoka, T.; Miyara, A.; Murakami, H.; Dilao, C.O.; Miyazaki, K. A shell and plate type condenser. In Proceedings of the 2nd International Symposium on Condenser and Condensation, Bath, UK, 28–30 March 1990; pp. 347–356. [Google Scholar]
- Uehara, H.; Nakaoka, T.; Hagiwara, K. Plate type condenser (cold water side heat transfer coefficient and friction factor). Refrigeration 1984, 59, 3–9. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Type of Heat Exchanger (Application) | Plate (Evaporator) | Plate (Evaporator) | Plate (Evaporator) | Plate (Condenser) | Plate (Condenser) | Plate (Condenser) |
Length (mm) | 960 | 718 | 1765 | 1213 | 1765 | 1450 |
Width (mm) | 576 | 325 | 605 | 709 | 605 | 235 |
Plate thickness (mm) | 0.7 | 0.5 | 0.6 | 0.6 | 0.6 | 1.0 |
Clearance of plates (mm) | 4.00 | 3.96 | 2.68 | 2.80 | 3.40 | 2.20 |
Equivalent diameter (mm) | 8.0 | 7.9 | 5.36 | 5.6 | 6.8 | 4.4 |
Material | SUS316 | Titanium | Titanium | Titanium | Titanium | SUS304 |
Surface pattern | Herringbone (72°) | Herringbone (30°) | Fluting & drainage | Emboss | Herringbone (58°) | Fluting & drainage |
Number of plates | 120 | 20 | 52 | 100 | 30 | 5 |
Heat transfer area per path (m2) | 1.686 | 0.417 | 1.592 | 3.683 | 1.683 | 0.560 |
Total passage cross sectional are (m2) | 0.14 | 0.012 | 0.041 | 0.099 | 0.031 | 0.0005 |
Reference | [31] | [31] | [31] | [32] | [33] | [34] |
No. | Overall Heat Transfer Coefficient U | Pressure Drop ∆P | Water Inlet Temperature (°C) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Multiplier Factor ξ * | Exponential Factor β * | Mean Velocity Data Range (m/s) | Heat Flux (kW/m2) | Multiplier Factor ζ * | Exponential Factor θ * | Mean Velocity Data Range (m/s) | |||
1 | 4.20 | 0.22 | 0.20–0.444 | 4.51–16.6 | 306.3 | 1.86 | 0.16–0.45 | 36.7–75.1 | [31] |
2 | 5.64 | 0.36 | 0.59–1.20 | 45.4–121.9 | 65.4 | 2.21 | 0.60–1.19 | 27.6–45.6 | [31] |
3 | 3.25 | 0.46 | 0.29–0.59 | 10.2–16.1 | 182.3 | 2.00 | 0.48–0.59 | 23.8–44.0 | [31] |
4 | 2.40 | 1.10 | 0.40–0.70 | N.A. | 311.3 | 1.86 | 0.40–0.70 | 10.0 | [32] |
5 | 1.80 | 0.22 | 0.51–0.94 | 11.9–12.5 | 9.4 | 1.79 | 0.51–0.94 | 7.1–15.8 | [33] |
6 | 1.66 | 0.65 | 0.55–0.29 | N.A. | 7.0 | 1.42 | 0.55–1.80 | 6.85 | [34] |
Plate No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
VHS,opt (m/s) | 0.39 | 0.60 | 0.49 | 1.03 | 0.33 | 2.00 |
UHS,opt (kW/m2K) | 1.57 | 0.62 | 1.14 | 0.34 | 0.48 | 0.27 |
∆PHS,opt (-) | 51.8 | 21.3 | 44.3 | 9.8 | 39.6 | 18.8 |
NTUHS,opt (-) | 1.57 | 0.62 | 1.14 | 0.34 | 0.48 | 0.27 |
(Wnet/A)m (kW/m2) | 0.18 | 0.39 | 0.14 | 0.18 | 0.05 | 0.22 |
ω (1/m2) | 0.36 | 0.92 | 0.33 | 0.15 | 0.13 | 0.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasunaga, T.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Basic Heat Exchanger Performance Evaluation Method on OTEC. J. Mar. Sci. Eng. 2018, 6, 32. https://doi.org/10.3390/jmse6020032
Yasunaga T, Noguchi T, Morisaki T, Ikegami Y. Basic Heat Exchanger Performance Evaluation Method on OTEC. Journal of Marine Science and Engineering. 2018; 6(2):32. https://doi.org/10.3390/jmse6020032
Chicago/Turabian StyleYasunaga, Takeshi, Takafumi Noguchi, Takafumi Morisaki, and Yasuyuki Ikegami. 2018. "Basic Heat Exchanger Performance Evaluation Method on OTEC" Journal of Marine Science and Engineering 6, no. 2: 32. https://doi.org/10.3390/jmse6020032