Mesoscale Morphological Change, Beach Rotation and Storm Climate Influences along a Macrotidal Embayed Beach
Abstract
:1. Introduction
2. Physical Background
3. Methods
3.1. Beach Profile Monitoring (1996–2013)
3.2. Wind, Wave and Storm Characterization Data
4. Results
4.1. Beach Level Change (1996–2013)
Profile | Mean | Std. Deviation | Std. Error Mean | 95% Confidence | ttab | |||||
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | tcalc | df | Sig | 0.05 | 0.01 | ||||
T09 | 0.677 | 0.437 | 0.083 | 0.50758 | 0.84640 | −8.199 | 27 | 0.000 | 2.052 | 2.771 |
T10 | 0.338 | 0.258 | 0.049 | 0.23779 | 0.43771 | −6.933 | 27 | 0.000 | 2.052 | 2.771 |
T11 | 0.000 | 1.000 | 0.189 | −0.38766 | 0.38789 | 0.001 | 27 | 1.000 | 2.052 | 2.771 |
4.2. Beach Volumes (1996–2013)
Timescale | Subaerial Zone Volumes (m3·m−1) | Subaerial Zone Inter-Survey Volumes (m3·m−1) | Intertidal Zone Volumes (m3·m−1) | Intertidal Zone Inter-Survey Volumes (m3·m−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on | off | T09 | T10 | T11 | T09 | T10 | T11 | T09 | T10 | T11 | T09 | T10 | T11 |
Apr-96 | 81.0 | 169.5 | 96.5 | 974.6 | 923.5 | 938.4 | |||||||
Apr-96 | Apr-97 | 89.7 | 167.5 | 101.8 | 8.7 | −1.9 | 5.3 | 960.8 | 920.1 | 935.0 | −13.8 | −3.4 | −3.4 |
Apr-97 | Apr-99 | 80.3 | 165.5 | 95.1 | −9.4 | −2.0 | −6.7 | 927.6 | 928.3 | 940.6 | −33.2 | 8.3 | 5.6 |
Apr-99 | Oct-99 | 82.2 | 162.2 | 97.7 | 1.9 | −3.3 | 2.6 | 927.1 | 917.1 | 922.2 | −0.5 | −11.3 | −18.4 |
Oct-99 | Apr-00 | 81.9 | 164.2 | 107.0 | −0.3 | 2.0 | 9.4 | 919.6 | 900.1 | 905.7 | −7.5 | −16.9 | −16.5 |
Apr-00 | Oct-00 | 80.6 | 162.1 | 111.5 | −1.4 | −2.0 | 4.5 | 925.1 | 922.7 | 911.3 | 5.5 | 22.6 | 5.6 |
Oct-00 | Apr-01 | 77.1 | 159.1 | 110.0 | −3.5 | −3.1 | −1.6 | 901.0 | 893.3 | 895.4 | −24.1 | −29.4 | −15.9 |
Apr-01 | Oct-01 | 71.3 | 160.0 | 108.2 | −5.8 | 0.9 | −1.8 | 910.7 | 892.2 | 911.5 | 9.7 | −1.1 | 16.1 |
Oct-01 | Apr-02 | 74.6 | 155.5 | 107.9 | 3.3 | −4.5 | −0.3 | 906.6 | 885.7 | 898.9 | −4.1 | −6.5 | −12.7 |
Apr-02 | Oct-02 | 72.7 | 152.6 | 113.3 | −1.9 | −2.9 | 5.4 | 908.7 | 887.5 | 909.0 | 2.1 | 1.8 | 10.2 |
Oct-02 | Apr-03 | 70.1 | 144.1 | 113.4 | −2.6 | −8.5 | 0.1 | 928.6 | 889.1 | 904.4 | 19.9 | 1.6 | −4.7 |
Apr-03 | Oct-03 | 74.2 | 152.4 | 112.1 | 4.1 | 8.3 | −1.4 | 924.0 | 876.8 | 869.8 | −4.6 | −12.4 | −34.6 |
Oct-03 | Apr-04 | 70.8 | 139.0 | 108.4 | −3.4 | −13.4 | −3.7 | 927.0 | 896.1 | 875.4 | 3.0 | 19.3 | 5.6 |
Apr-04 | Oct-04 | 77.4 | 146.5 | 110.9 | 6.6 | 7.4 | 2.5 | 928.4 | 882.8 | 856.0 | 1.4 | −3.3 | −19.4 |
Oct-04 | Apr-05 | 76.3 | 146.2 | 104.6 | −1.0 | −0.3 | −6.3 | 932.1 | 866.9 | 833.2 | 3.7 | −15.9 | −22.7 |
Apr-05 | Apr-06 | 71.3 | 147.8 | 114.0 | −5.0 | 1.5 | 9.4 | 901.8 | 845.1 | 829.1 | −30.4 | −21.7 | −4.1 |
Apr-06 | Apr-07 | 70.0 | 154.9 | 114.4 | −1.4 | 7.1 | 0.4 | 880.0 | 876.4 | 855.4 | −21.8 | 31.3 | 26.3 |
Apr-07 | Apr-08 | 57.2 | 162.1 | 111.3 | −12.8 | 7.2 | −3.1 | 769.5 | 877.1 | 863.8 | −110.5 | 0.7 | 8.4 |
Apr-08 | Apr-09 | 56.0 | 165.5 | 127.5 | −1.2 | 3.3 | 16.2 | 783.1 | 870.5 | 872.3 | 13.6 | −6.6 | 8.5 |
Apr-09 | Apr-10 | 53.9 | 163.8 | 136.7 | −2.0 | −1.7 | 9.2 | 760.0 | 862.0 | 832.3 | −23.1 | −8.5 | −40.0 |
Apr-10 | Apr-12 | 58.7 | 167.7 | 136.5 | 4.8 | 3.9 | −0.2 | 789.0 | 851.8 | 836.2 | 29.0 | −10.2 | 3.9 |
Apr-12 | Apr-13 | 44.9 | 164.4 | 125.1 | −13.8 | −3.3 | −11.4 | 821.7 | 847.0 | 843.3 | 32.7 | −4.9 | 7.1 |
4.3. Beach Rotation (1996–2013)
4.4. Wave Climate and Storms (1996–2013)
Class | Range | Frequency | Wave Height (Avg) | Period (Avg) | Duration (Avg) | Storm Power (Avg) | |
---|---|---|---|---|---|---|---|
N | % | ||||||
I | <600 | 125 | 47 | 4.7 | 8.0 | 16.7 | 373.2 |
II | 601–1236 | 69 | 26 | 5.5 | 8.6 | 30.2 | 875.3 |
III | 1237–2022 | 48 | 18 | 6.5 | 9.1 | 42.2 | 1679.3 |
IV | 2023–3529 | 10 | 4 | 6.8 | 9.1 | 63.1 | 2753.7 |
V | >3529 | 15 | 6 | 7.0 | 9.3 | 96.5 | 4719.7 |
4.5. Environmental Forcing and Morphological Change (1998–2013)
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ojeda, E.; Guillen, J. Shoreline Dynamics and beach rotation of artificial embayed beaches. Mar. Geol. 2008, 253, 51–62. [Google Scholar] [CrossRef]
- Short, A.D.; Masselink, G. Embayed and structurally controlled beaches. In Handbook of Beach and Shoreface Morphodynamics; Short, A.D., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 1999; pp. 230–250. [Google Scholar]
- Benedet, L.; Klein, A.H.F.; Hsu, J.R.C. Practical insights and applicability of empirical bay shape equations. In Coastal Engineering Conference; American Society of Civil Engineers: Reston, VA, USA, 2004; pp. 2181–2193. [Google Scholar]
- Boashash, B. Theory of quadratic TFDs. In TIme-Frequency Signal Analysis and Processing: A Comprehensive Reference; Boashash, B., Ed.; Elsevier Ltd.: Oxford, UK, 2003; pp. 59–81. [Google Scholar]
- Carter, R.W.G. Coastal Environments: An Introduction to the Physical, Ecological and Cultural Systems of Coastlines; Academic Press: London, UK, 1988; p. 617. [Google Scholar]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. A reevaluation of coastal embayment rotation: The dominance of cross-shore versus alongshore sediment transport processes, Collaroy-Narrabeen Beach southeast Australia. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Bryan, K.R.; Foster, R.; MacDonald, I. Beach rotation at two adjacent headland-enclosed beaches. J. Coast. Res. 2013, 118, 2095–2100. [Google Scholar]
- Silva, A.N.; Taborda, R.; Antunes, C.; Catalão, J.; Duarte, J. Understanding the coastal variability at Norte beach, Portugal. J. Coast. Res. 2013, 118, 2173–2178. [Google Scholar]
- Klein, A.H.F.; Benedet Filho, L.; Schumacher, D.H. Short-term beach rotation processes in distinct headland bay systems. J. Coast. Res. 2002, 18, 442–458. [Google Scholar]
- Ranasinghe, R.; McLoughlan, R.; Short, A.; Symonds, G. The southern oscillation index, wave climate and beach rotation. Mar. Geol. 2004, 204, 273–287. [Google Scholar] [CrossRef]
- Ruiz de Alegria-Arzaburu, A.; Masselink, G. Storm response and beach rotation on a gravel beach, Slapton Sands, UK. Mar. Geol. 2010, 278, 77–99. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T. Mesoscale evolution of a headland bay: Beach rotation Process. Geomorphology 2010, 123, 129–141. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T.; Jenkins, R.E. Short-term beach rotation, wave climate and the North Atlantic Oscillation (NAO). Prog. Phys. Geogr. 2011, 35, 333–352. [Google Scholar] [CrossRef]
- Short, A.D.; Trembanis, A.C. Decadal scale patterns of beach oscillation and rotation: Narabeen Beach, Australia—Time Series PCA and Wavelet Analysis. J. Coast. Res. 2004, 20, 523–532. [Google Scholar] [CrossRef]
- Short, A.D.; Trembanis, A.C.; Turner, I.L. Beach Oscillation, Rotation and the southern Oscillation, Narabeen Beach, Australia. Coast. Eng. 2000, 2439–2452. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T.; Jenkins, R.E. Medium timescale beach rotation: Gale climate and offshore island influences. Geomorphology 2011, 135, 97–107. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Jackson, D.W.T. Geomorphological and dynamic constraints on mesoscale coastal response to storms, Western Ireland. In Coastal Sediments ’07: Proceedings 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes; American Society of Civil Engineers: Reston, VA, USA, 2003; pp. 3015–3024. [Google Scholar]
- Cooper, J.A.G. Temperate coasts. In Applied Sedimentology; Perry, C.M., Taylor, K., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 263–301. [Google Scholar]
- O’Connor, M.O.; Cooper, J.A.G.; Jackson, D.W.T. Morphological behaviour of headland-embayment and inlet-associated beaches, Northwest Ireland. J. Coast. Res. 2007, 59, 626–630. [Google Scholar]
- Anthony, E.J.; Dolique, F. The influence of Amazon-derived mud banks on the morphology of sandy headland-bound beach in Cayenne, French Guiana: A short to long-term perspective. Mar. Geol. 2004, 208, 249–264. [Google Scholar] [CrossRef]
- Anthony, E.J.; Gardel, A.; Dolique, F.; Guiral, D. Short-term changes in the planshape of a sandy beach in response to sheltering by a near shore mud bank, Cayenne, French Guiana. Earth Surf. Processes Landf. 2002, 27, 857–866. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T.; Jenkins, R.E. A multi-century record of linked nearshore and coastal change. Earth Surf. Processes Landf. 2011, 36, 995–1006. [Google Scholar] [CrossRef]
- Dehouck, A.; Dupuis, H.; Senechal, N. Pocket beach hydrodynamics: The example of four macrotidal beaches, Brittany, France. Mar. Geol. 2000, 266, 1–17. [Google Scholar] [CrossRef]
- Dolique, F.; Anthony, E.J. Short-term profile changes of sandy pocket beaches affected by amazon-derived mud, Cayenne, French Guiana. J. Coast. Res. 2005, 21, 1195–1202. [Google Scholar] [CrossRef]
- Pinto, C.A.; Tabord, T.; Andrade, C.; Teixeira, S. Seasonal and mesoscale variations at an embayed beach (Armacao De Pera, Portugal). J. Coast. Res. 2009, SI56, 118–122. [Google Scholar]
- Loureiro, C.; Ferreira, O.; Cooper, J.A.G. Contrasting morphological behaviour at embayed beaches in southern Portugal. J. Coast. Res. 2009, SI56, 83–87. [Google Scholar]
- Sedrati, M.; Anthony, E.J. A brief overview of plan-shape disequilibrium in embayed beaches: Tangier Bay (Morocco). Mediterranee 2007, 108, 125–130. Available online: http://mediteranee.revues.org/index190.html?file=1 (accessed on 21 September 2009). [Google Scholar] [CrossRef]
- Stone, G.W.; Orford, J.D. Storms and their significance in coastal morpho-sedimentary dynamics. Mar. Geol. 2004, 210, 1–5. [Google Scholar] [CrossRef]
- Maspataud, A.; Ruz, M.H.; Hequette, A. Spatial variability in post-storm beach recovery along a macrotidal barred beach, southern North Sea. J. Coast. Res. 2009, 1, 88–92. [Google Scholar]
- Uncles, R.J. Physical properties and processes in the Bristol Channel and Severn Estuary. Mar. Pollut. Bull. 2010, 61, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.R.; Crisp, S. Sea level trends and NAO influences: The Bristol channel/Severn estuary. Glob. Planet. Change 2010, 73, 211–218. [Google Scholar] [CrossRef]
- Lavernock Point to St Ann’s Head SMP2. Available online: http://www.southwalescoast.org/contents.asp?id=55#SMP2MainDocument (accessed on 20 June 2011).
- Toghill, P. The Geology of Britain: An Introduction; Crowhill Press Ltd.: Wiltshire, UK, 2000; p. 192. [Google Scholar]
- Hunter, A.; Easterbrook, G. The Geological History of the British Isles; The Alden Group: Oxford, UK, 2004; p. 143. [Google Scholar]
- Mackie, A.S.Y.; James, J.W.C.; Rees, E.I.S.; Darbyshire, T.; Philpot, S.L.; Mortimer, K.; Jenkins, G.O. The Outer Bristol Channel Marine Habitat Study. 2002. Available online: http://www.marlin.ac.uk/obc/pdfs/report/chapter%202.pdf (accessed on 12 December 2010).
- Owen, T.R. Geology Explained in South Wales; David & Charles Publishers: Newton Abbott, UK, 1973; p. 177. [Google Scholar]
- Hillier, R.D.; Williams, B.P.J. The alluvial OLD Red Sandstone: Fluvial Basins. In The Geology of England and Wales; Brenchley, P.J., Rawson, P.F., Eds.; The Geological Society: London, UK, 2006; pp. 155–172. [Google Scholar]
- Duvivier, P. South Beach, Tenby; Posford Duvivier: Peterborough, UK, 1998; p. 19. [Google Scholar]
- Gibbard, B. Tenby South Beach Erosion: Review of Wind/Wave Data, Beach Monitoring and Modelling; Royal Haskoning: Peterborough, UK, 2005; p. 39. [Google Scholar]
- Morang, A.; Batten, B.K.; Connell, K.J.; Tanner, W.; Larson, M.; Kraus, N.C. Regional Morphology Analysis Package (RMAP), Version 3: Users Guide and Tutorial; Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-XIV-9. U.S. Army Corps of Engineers: Washington, DC, USA, 2009. Available online: http://chl.erdc.usace.army.mil/chetn/ (accessed on 6 June 2010).
- Taveira-Pinto, C.A.; Taborda, R.; Andrade, C.; Teixeira, S.B. Seasonal and Mesoscale variations at an Embayed Beach (Armacao De Pera, Portugal). J. Coast. Res. 2009, 25, 118–122. [Google Scholar]
- Dorsch, W.; Newland, T.; Tassone, D.; Tymons, S.; Walker, D. A statistical approach to modeling the temporal patterns of ocean storms. J. Coast. Res. 2008, 24, 1430–1438. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; Wiley and Sons: Chichester, UK, 2002; p. 638. [Google Scholar]
- Dolan, R.; Davis, R.E. An intensity scale for Atlantic coast northeast storms. J. Coast. Res. 1992, 8, 352–364. [Google Scholar]
- Thomas, T.; Lynch, S.K.; Phillips, M.R.; Williams, A.T. Long-term evolution of a sand spit, physical forcing and links to coastal flooding. Appl. Geogr. 2014, 53, 187–201. [Google Scholar] [CrossRef]
- Morton, I.; Bowers, J.; Mould, G. Estimating return period wave heights and winds speeds using a seasonal point process model. Coast. Eng. 1997, 26, 251–270. [Google Scholar] [CrossRef]
- Rangel, N.; Anfuso, G. Winter wave climate, storms and regional cycles: The SW Spanish Atlantic coast. Int. J. Climatol. 2013, 33, 2142–2156. [Google Scholar] [CrossRef]
- Jenks, G.F.; Caspal, F.C. Error on choropletic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T.; Jenkins, R.E. Rotation on two adjacent open coast macrotidal beaches. Appl. Geogr. 2012, 35, 363–376. [Google Scholar] [CrossRef]
- Carter, D.J.T.; Draper, L. Has the north-east Atlantic become rougher? Nature 1988, 332, 494. [Google Scholar] [CrossRef]
- Bacon, S.; Carter, D.J.T. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic. International. J. Climatol. 1993, 13, 423–436. [Google Scholar] [CrossRef]
- Allan, J.C.; Komar, P.D. Are ocean wave heights increasing in the eastern North Pacific? EOS 2000, 47, 561–567. [Google Scholar] [CrossRef]
- Moritz, H.; Moritz, H. Evaluating extreme storm power and potential implications to coastal infrastructure damage, Oregon Coast USA. In Proceedings of the 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada, 24–29 September 2006.
- Mendoza, E.T.; Jimenez, J.A. Coastal storm classification on the Catalan littoral (NW Mediterranean). Ing. Hidrául. Méx. 2008, 23, 23–34. [Google Scholar]
- Rangel-Buitrago, N.; Anfuso, G. Coastal storm characterization and morphological impacts on sandy coasts. Earth Surf. Processes Landf. 2011, 36, 1997–2010. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, T.; Rangel-Buitrago, N.; Phillips, M.R.; Anfuso, G.; Williams, A.T. Mesoscale Morphological Change, Beach Rotation and Storm Climate Influences along a Macrotidal Embayed Beach. J. Mar. Sci. Eng. 2015, 3, 1006-1026. https://doi.org/10.3390/jmse3031006
Thomas T, Rangel-Buitrago N, Phillips MR, Anfuso G, Williams AT. Mesoscale Morphological Change, Beach Rotation and Storm Climate Influences along a Macrotidal Embayed Beach. Journal of Marine Science and Engineering. 2015; 3(3):1006-1026. https://doi.org/10.3390/jmse3031006
Chicago/Turabian StyleThomas, Tony, Nelson Rangel-Buitrago, Michael R. Phillips, Giorgio Anfuso, and Allan T. Williams. 2015. "Mesoscale Morphological Change, Beach Rotation and Storm Climate Influences along a Macrotidal Embayed Beach" Journal of Marine Science and Engineering 3, no. 3: 1006-1026. https://doi.org/10.3390/jmse3031006
APA StyleThomas, T., Rangel-Buitrago, N., Phillips, M. R., Anfuso, G., & Williams, A. T. (2015). Mesoscale Morphological Change, Beach Rotation and Storm Climate Influences along a Macrotidal Embayed Beach. Journal of Marine Science and Engineering, 3(3), 1006-1026. https://doi.org/10.3390/jmse3031006