Challenges and Opportunities in the Integrated Economic and Oceanographic Analysis of Deoxygenation Impacts on Marine Fisheries and Ecosystems
Abstract
1. Introduction
2. Interdisciplinary Nature of the Study
3. Different Perspectives on Value
3.1. Economic Valuation Approaches
3.2. Oceanographic and Ecological Valuation Approaches
3.3. Challenges in Reconciling Value Perspectives
4. Uncertainty
5. Bridging Natural and Social Sciences
6. Challenges in Communication and Data Integration
7. A Roadmap for Interdisciplinary Integration
- Harmonization of Terminology: Researchers must first establish a common language. For instance, defining ‘hypoxia’ not just by chemical concentrations (e.g., mg/L) but by physiological thresholds relevant to specific commercial species (e.g., metabolic scope) can align biological data with economic impact assessments.
- Alignment of Spatiotemporal Scales: A key step is developing methodological protocols to downscale global climate projections to the regional scales where fisheries operate. Conversely, fisheries data often collected annually must be resolved to match the seasonal or monthly variability captured in oceanographic models to detect acute deoxygenation events.
- Co-design of Research Frameworks: Collaboration should begin at the project design phase, not at the analysis stage. Economists should identify key variables driving fishery profitability (e.g., fuel costs related to shifting fishing grounds) so oceanographers can tailor their models to output relevant environmental predictors.
- Data Sharing Protocols: Establishing secure platforms for sharing sensitive fishery-dependent data (e.g., vessel locations) while protecting confidentiality is essential. Anonymized, aggregated data layers can be integrated with oceanographic grids to allow joint analysis without compromising commercial secrets.
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeling, R.E.; Körtzinger, A.; Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2010, 2, 199–229. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335–339. [Google Scholar] [CrossRef]
- Claret, M.; Galbraith, E.D.; Palter, J.B.; Bianchi, D.; Fennel, K.; Gilbert, D.; Dunne, J.P. Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nat. Clim. Change 2018, 8, 868–872. [Google Scholar] [CrossRef]
- Laffoley, D.; Baxter, J.M. Ocean Deoxygenation: Everyone’s Problem—Causes, Impacts, Consequences and Solutions; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Stramma, L.; Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and nutrient trends. Ocean Sci. 2021, 17, 833–847. [Google Scholar] [CrossRef]
- Levin, L.A.; Breitburg, D.L. Linking coasts and seas to address ocean deoxygenation. Nat. Clim. Change 2015, 5, 401–403. [Google Scholar] [CrossRef]
- Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.P.; Langdon, C.; Opdyke, B.N. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 1999, 284, 118–120. [Google Scholar] [CrossRef]
- Caldeira, K.; Wickett, M.E. Oceanography: Anthropogenic carbon and ocean pH. Nature 2003, 425, 365. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The IPCC Scientific Assessment; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Stephens, C. Warming of the world ocean. Science 2000, 287, 2225–2229. [Google Scholar] [CrossRef]
- Kim, H.; Franco, A.C.; Sumaila, U.R. A selected review of impacts of ocean deoxygenation on fish and fisheries. Fishes 2023, 8, 316. [Google Scholar] [CrossRef]
- Sampaio, E.; Santos, C.; Rosa, I.C.; Ferreira, V.; Pörtner, H.O.; Duarte, C.M.; Levin, L.A.; Rosa, R. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 2021, 5, 311–321. [Google Scholar] [CrossRef]
- Deutsch, C.; Penn, J.L.; Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 2020, 585, 557–562. [Google Scholar] [CrossRef]
- Popova, E.; Aksenov, Y.; Amoudry, L.O.; Becker, A.; Bricheno, L.; Brown, J.M.; Byrne, D.; Charalampopoulou, A.; Corney, S.; Daewel, U.; et al. Socio-oceanography: An opportunity to integrate marine social and natural sciences. Front. Mar. Sci. 2023, 10, 1209356. [Google Scholar] [CrossRef]
- Shepherd, J.G.; Brewer, P.G.; Oschlies, A.; Watson, A.J. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Philos. Trans. R. Soc. A Mathematical. Phys. Eng. Sci. 2017, 375, 20170240. [Google Scholar] [CrossRef]
- Garçon, V.; Karstensen, J.; Palacz, A.; Telszewski, M.; Aparco Lara, T.; Breitburg, D.; Chagas, C.; Chavez, F.; Durante, L.; Engel, A.; et al. Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: From climate to fish—The VOICE initiative. Front. Mar. Sci. 2019, 6, 722. [Google Scholar] [CrossRef]
- Woods, H.A.; Moran, A.L.; Atkinson, D.; Audzijonyte, A.; Berenbrink, M.; Borges, F.O.; De Wit, P.; Diaz, F.; Frazier, M.R.; Grans, A.; et al. Integrative approaches to understanding organismal responses to aquatic deoxygenation. Biol. Bull. 2022, 243, 85–103. [Google Scholar] [CrossRef]
- Thébaud, O.; Nielsen, J.R.; Motova, A.; Curtis, H.; Bastardie, F.; Blomqvist, G.E.; Christensen, A.; Daures, F.; Delanoe, J.; Doumenge, F.; et al. Integrating economics into fisheries science and advice: Progress, needs, and future opportunities. ICES J. Mar. Sci. 2023, 80, 647–663. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Munro, G.R. Fisheries economics. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, J.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 354–360. [Google Scholar]
- Franco, A.C.; Kim, H.; Frenzel, H.; Deutsch, C.; Ianson, D.; Sumaila, U.R.; Tortell, P.D. Impact of warming and deoxygenation on the habitat distribution of Pacific halibut in the Northeast Pacific. Fish. Oceanogr. 2022, 31, 601–614. [Google Scholar] [CrossRef]
- Pauly, D.; Froese, R. MSY needs no epitaph—But it was abused. ICES J. Mar. Sci. 2021, 78, 2204–2210. [Google Scholar] [CrossRef]
- IPCC. Changing ocean, marine ecosystems, and dependent communities. In The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Robert, D.C., Masson-Delmotte, V., Zhai, P., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 447–588. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Brown, T.C. The concept of value in resource allocation. Land Econ. 1984, 60, 231–246. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA Panel on Contingent Valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Sumaila, U.R. Differences in economic perspectives and implementation of ecosystem-based management of marine resources. Mar. Ecol. Prog. Ser. 2005, 300, 279–282. [Google Scholar] [CrossRef]
- Sumaila, U.R. Intergenerational cost-benefit analysis and marine ecosystem restoration. Fish Fish. 2004, 5, 329–343. [Google Scholar] [CrossRef]
- Volk, T.; Hoffert, M.I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present; Geophysical Monograph Series; Sundquist, E.T., Broecker, W.S., Eds.; American Geophysical Union: Washington, DC, USA, 1985; Volume 32, pp. 99–110. [Google Scholar]
- Hicks, C.C.; Cohen, P.J.; Graham, N.A.J.; Nash, K.L.; Allison, E.H.; D’Lima, C.; Mills, D.J.; Roscher, M.; Thilsted, S.H.; Thorne-Lyman, A.L.; et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 2019, 574, 95–98. [Google Scholar] [CrossRef]
- Munro, G.R. The optimal management of transboundary renewable resources. Can. J. Econ. 1979, 12, 355–376. [Google Scholar] [CrossRef]
- Mace, G.M. Whose conservation? Science 2014, 345, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Liquete, C.; Piroddi, C.; Drakou, E.G.; Gurney, L.; Katsanevakis, S.; Charef, A.; Egoh, B. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 2013, 8, e67737. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Martín-López, B. Ecological economics perspectives on ecosystem services valuation. In Handbook of Ecological Economics; Martínez Alier, J., Muradian, R., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2015; pp. 260–282. [Google Scholar]
- Martínez Alier, J.; Muradian, R. (Eds.) Handbook of Ecological Economics; Edward Elgar Publishing: Cheltenham, UK, 2015. [Google Scholar]
- Stramma, L.; Prince, E.D.; Schmidtko, S.; Luo, J.; Hoolihan, J.P.; Visbeck, M.; Wallace, D.W.R.; Brandt, P.; Körtzinger, A. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2012, 2, 33–37. [Google Scholar] [CrossRef]
- Balmford, A.; Bruner, A.; Cooper, P.; Costanza, R.; Farber, S.; Green, R.E.; Jenkins, M.; Kramer, R.; Li, N.; Madden, T.; et al. Economic reasons for conserving wild nature. Science 2002, 297, 950–953. [Google Scholar] [CrossRef]
- Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review; HM Treasury: London, UK, 2021. [Google Scholar]
- Sumaila, U.R.; Dyck, A.; Baske, A. Subsidies to tuna fisheries in the Western Central Pacific Ocean. Mar. Policy 2014, 43, 288–294. [Google Scholar] [CrossRef]
- Benway, H.M.; Lorenzoni, L.; White, A.E.; Fiedler, B.; Levine, N.M.; Nicholson, D.P.; DeGrandpre, M.D.; Sabine, C.L.; Bograd, S.J.; Church, M.J.; et al. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Front. Mar. Sci. 2019, 6, 393. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Walters, C. Intergenerational discounting: A new intuitive approach. Ecol. Econ. 2005, 52, 135–142. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate tipping points—Too risky to bet against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef]
- Seibel, B.A. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol. 2011, 214, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Smith, M.D.; Craig, J.K. Quantifying the economic effects of hypoxia on a fishery for brown shrimp (Farfantepenaeus aztecus). Mar. Resour. Econ. 2010, 25, 235–252. [Google Scholar] [CrossRef]
- Smith, M.D.; Oglend, A.; Kirkpatrick, A.J.; Asche, F.; Bennear, L.S.; Craig, J.K.; Nance, J.M. Seafood prices reveal impacts of a major ecological disturbance. Proc. Natl. Acad. Sci. USA 2017, 114, 1512–1517. [Google Scholar] [CrossRef]
- Seibel, B.A.; Deutsch, C. Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature. J. Exp. Biol. 2020, 223, jeb210492. [Google Scholar] [CrossRef] [PubMed]
- Plourde, C.; Bodell, R. Uncertainty in fisheries economics: The role of the discount rate. Can. J. Fish. Aquat. Sci. 1984, 41, 155–170. [Google Scholar] [CrossRef]
- Stramma, L.; Oschlies, A.; Schmidtko, S. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 2012, 9, 4045–4057. [Google Scholar] [CrossRef]
- Schultz, C.; Dunne, J.P.; Liu, X.; Drenkard, E.; Carter, B.R. Characterizing subsurface oxygen variability in the California Current System (CCS) and its links to water mass distribution. J. Geophys. Res. Ocean. 2024, 129, e2023JC020124. [Google Scholar] [CrossRef]
- Pennino, M.G.; Conesa, D.; López-Quílez, A.; Muñoz, F.; Fernández, A.; Bellido, J.M. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 2016, 73, 2302–2310. [Google Scholar] [CrossRef]
- Trice, A.; Robbins, C.; Philip, N.; Rumsey, M. Challenges and Opportunities for Ocean Data to Advance Conservation and Management; Ocean Conservancy: Washington, DC, USA, 2021. [Google Scholar]
- van Putten, I.E.; Jennings, S.; Frusher, S.; Bustamante, R.H.; D’Silva, D. A risk-based framework for assessing data confidentiality in fisheries research. ICES J. Mar. Sci. 2018, 75, 915–926. [Google Scholar]
- Walter, J.F.; Hoenig, J.M.; Christman, M.C. Reducing bias and filling in spatial gaps in fishery-dependent catch-per-unit-effort data by geostatistical prediction, I. Methodology and simulation. N. Am. J. Fish. Manag. 2014, 34, 1095–1107. [Google Scholar] [CrossRef]
- Grüss, A.; Walter, J.F.; Babcock, E.A.; Forrestal, F.C.; Thorson, J.T.; Lauretta, M.V.; Schirripa, M.J. Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort standardization models. Fish. Res. 2019, 213, 75–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, H.; Sumaila, U.R. Challenges and Opportunities in the Integrated Economic and Oceanographic Analysis of Deoxygenation Impacts on Marine Fisheries and Ecosystems. J. Mar. Sci. Eng. 2026, 14, 150. https://doi.org/10.3390/jmse14020150
Kim H, Sumaila UR. Challenges and Opportunities in the Integrated Economic and Oceanographic Analysis of Deoxygenation Impacts on Marine Fisheries and Ecosystems. Journal of Marine Science and Engineering. 2026; 14(2):150. https://doi.org/10.3390/jmse14020150
Chicago/Turabian StyleKim, Hongsik, and U. Rashid Sumaila. 2026. "Challenges and Opportunities in the Integrated Economic and Oceanographic Analysis of Deoxygenation Impacts on Marine Fisheries and Ecosystems" Journal of Marine Science and Engineering 14, no. 2: 150. https://doi.org/10.3390/jmse14020150
APA StyleKim, H., & Sumaila, U. R. (2026). Challenges and Opportunities in the Integrated Economic and Oceanographic Analysis of Deoxygenation Impacts on Marine Fisheries and Ecosystems. Journal of Marine Science and Engineering, 14(2), 150. https://doi.org/10.3390/jmse14020150

