The Optimization of Container Relocation in Terminal Yards: A Computational Study Using Strategy-Iterative Deepening Branch-and-Bound Algorithm
Abstract
1. Introduction
2. Literature Review
- (1)
- A refined lower-bound estimation method was developed to enhance node potential evaluation, enabling the earlier identification of unpromising branches through amplified lower-bound differentiation, coupled with two dominance rules to facilitate the pruning of unpromising branches, thereby reducing search space and improving algorithmic efficiency.
- (2)
- The algorithm incorporates a proactive probe mechanism, and the proposed strategy-oriented algorithm can quickly calculate a more powerful (tighter) upper bound. At the same time, the algorithm optimized the node search order (considering both the current node state and future container relocate conditions) to accelerate convergence.
- (3)
- Algorithms can set truncation conditions to achieve early stopping, breaking the binary opposition pattern where precise algorithms are equal to “slow but accurate” and heuristics are equal to “fast but secondary”. This allows precise algorithms to be adjusted to “accurate but fast”, providing a new paradigm for the practical application of precise algorithms in industrial scenarios.
3. Problem Description and Optimization Model
3.1. Problem Description
3.2. Optimization Model
3.2.1. Model Assumption
- (1)
- There are unique container identifiers within the bay, eliminating duplicate numbering.
- (2)
- There is strict adherence to predefined retrieval sequences without deviation.
- (3)
- There is stack height compliance with maximum tier capacity constraints.
- (4)
- Only topmost blocking containers above the current target are eligible for relocation until target container has been retrieved, after which subsequent target stacks become active.
- (5)
- All operations of container relocation and retrieve occur within the same bay.
- (6)
- There are standardized container dimensions ensuring spatial uniformity.
3.2.2. Notations
3.2.3. Model Establishment
4. Strategy-Oriented Algorithm
Algorithm 1. Strategy-Oriented Algorithm (SOA) |
; : : ; 6: else: ; ; ; ; |
5. Strategy-Iterative Deepening Branch-and-Bound Algorithm
5.1. Upper and Lower Bound
Algorithm 2. Lower-Bound Algorithm |
1: function LowerBound: , , ; 2: function 3: for: each stack in bay 4: for: each tier in stack 5: if find : ++; 6: end for 7: end for 8: function 9: for: each above target container 10: if (): ++; 11: else: ,update(); 12: if current target container has been retrieved: determine the next target container, line 9; 13: end for 14: return ; |
5.2. Iterative Deepening Framework
Algorithm 3. Iterative deepening framework |
; ; ; ; 5: loop ; ; ; ++; |
5.3. Depth-Limited Tree Search
Algorithm 4. Depth-Limited Tree Search |
; do ; ): continue ; ); ; ; ): continue; ; ; ; ; 15: end for ; ; ; ); line 17; 23: end for ); |
5.4. Dominance Rules
- (1)
- (2)
- (3)
- (1)
- (2)
- (3)
6. Computational Experiments and Analysis
6.1. Comparison with Exact Algorithm
6.1.1. Comparative Analysis in Small-Scale Instance
6.1.2. Comparative Analysis in Medium-to-Large-Scale Instance
6.2. Comparison with Heuristic Algorithm
6.2.1. Comparison Between SOA and Heuristic Algorithms
6.2.2. Comparison Between S-IDB&B and Heuristic Algorithms
6.3. Analysis of Probing Condition Change
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BS | Beam Search |
CM | Corridor Method |
CRP | Container Relocation Problem |
DLTS | Depth-Limited Tree Search |
RCRP | Restricted Container Relocation Problem |
S-IDB&B | Strategy-Iterative Deepening Branch and Bound |
SOA | Strategy-Oriented Algorithm |
UCRP | Unrestricted Container Relocation Problem |
References
- Ni, M.; Chang, D. Storage space allocation based on dynamic strategy in container terminal yard. Appl. Res. Comput. 2019, 36, 2363–2367. [Google Scholar] [CrossRef]
- Filom, S.; Amiri, A.M.; Razavi, S. Applications of Machine Learning Methods in Port Operations—A Systematic Literature Review. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 102722. [Google Scholar] [CrossRef]
- Świeboda, J.; Zając, M. Analysis of Reshuffling Cost at a Container Terminal. In Proceedings of the Dependability Engineering and Complex Systems, Brunów, Poland, 27 June–1 July 2016; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 491–503. [Google Scholar]
- Lersteau, C.; Shen, W. A Survey of Optimization Methods for Block Relocation and PreMarshalling Problems. Comput. Ind. Eng. 2022, 172, 108529. [Google Scholar] [CrossRef]
- König, F.G.; Lübbecke, M.E. Sorting with Complete Networks of Stacks. In Algorithms and Computation; Hong, S.-H., Nagamochi, H., Fukunaga, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5369, pp. 895–906. ISBN 978-3-540-92181-3. [Google Scholar]
- Felsner, S.; Pergel, M. The Complexity of Sorting with Networks of Stacks and Queues. In Proceedings of the Algorithms—ESA 2008, Karlsruhe, Germany, 15–17 September 2008; Halperin, D., Mehlhorn, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 417–429. [Google Scholar]
- Caserta, M.; Schwarze, S.; Voß, S. A Mathematical Formulation and Complexity Considerations for the Blocks Relocation Problem. Eur. J. Oper. Res. 2012, 219, 96–104. [Google Scholar] [CrossRef]
- Expósito-Izquierdo, C.; Melián-Batista, B.; Marcos Moreno-Vega, J. A Domain-Specific Knowledge-Based Heuristic for the Blocks Relocation Problem. Adv. Eng. Inform. 2014, 28, 327–343. [Google Scholar] [CrossRef]
- Caserta, M.; Voß, S.; Sniedovich, M. Applying the Corridor Method to a Blocks Relocation Problem. Spectrum 2011, 33, 915–929. [Google Scholar] [CrossRef]
- Jovanovic, R.; Tuba, M.; Voß, S. An Efficient Ant Colony Optimization Algorithm for the Blocks Relocation Problem. Eur. J. Oper. Res. 2019, 274, 78–90. [Google Scholar] [CrossRef]
- He, J.; Chang, D.; Mi, W.; Yan, W. A Hybrid Parallel Genetic Algorithm for Yard Crane Scheduling. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 136–155. [Google Scholar] [CrossRef]
- Jin, B.; Tanaka, S. An Exact Algorithm for the Unrestricted Container Relocation Problem with New Lower Bounds and Dominance Rules. Eur. J. Oper. Res. 2023, 304, 494–514. [Google Scholar] [CrossRef]
- Yi, Z.; Jiang, J.; Hu, Y. An Optimization Control Algorithm for Containers Relocation Based on PCNN Model. Acta Autom. Sin. 2011, 37, 241–244. [Google Scholar] [CrossRef]
- Zhu, M.; Cheng, H.; Fan, X. Block Relocation Problem With Filter Based Beam Search Algorithm. Comput. Integr. Manuf. Syst. 2012, 18, 639–644. [Google Scholar] [CrossRef]
- Forster, F.; Bortfeldt, A. A Tree Search Procedure for the Container Relocation Problem. Comput. Oper. Res. 2012, 39, 299–309. [Google Scholar] [CrossRef]
- Jin, B.; Zhu, W.; Lim, A. Solving the Container Relocation Problem by an Improved Greedy Look-Ahead Heuristic. Eur. J. Oper. Res. 2015, 240, 837–847. [Google Scholar] [CrossRef]
- Feillet, D.; Parragh, S.N.; Tricoire, F. A Local-Search Based Heuristic for the Unrestricted Block Relocation Problem. Comput. Oper. Res. 2019, 108, 44–56. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Geng, Z.; Xu, Z. Loading Relocation Problem Based on Rule Set Based Beam Search Algorithm. Comput. Integr. Manuf. Syst. 2023, 29, 1040–1054. [Google Scholar] [CrossRef]
- Tricoire, F.; Scagnetti, J.; Beham, A. New Insights on the Block Relocation Problem. Comput. Oper. Res. 2018, 89, 127–139. [Google Scholar] [CrossRef]
- Chen, Y.; Han, X.; Niu, Y. Optimization of Export Container Relocation Operations Based on Policy Search Algorithm. Comput. Eng. 2024, 1–10. [Google Scholar] [CrossRef]
- Xiao, X.; Ji, B.; Yu, S.S.; Wu, G. A Tabu-Based Adaptive Large Neighborhood Search for Scheduling Unrelated Parallel Batch Processing Machines with Non-Identical Job Sizes and Dynamic Job Arrivals. Flex. Serv. Manuf. J. 2024, 36, 409–452. [Google Scholar] [CrossRef]
- Karpuzoğlu, O.; Akyüz, M.H.; Öncan, T. A Tabu Search Based Heuristic Approach for the Dynamic Container Relocation Problem. In Proceedings of the Operations Research Proceedings 2015, Vienna, Austria, 1–4 September 2015; Dörner, K.F., Ljubic, I., Pflug, G., Tragler, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 165–171. [Google Scholar]
- Wang, S.; and Zhao, Q. Probabilistic Tabu Search Algorithm for Container Liner Shipping Problem with Speed Optimisation. Int. J. Prod. Res. 2022, 60, 3651–3668. [Google Scholar] [CrossRef]
- Bacci, T.; Mattia, S.; Ventura, P. The Bounded Beam Search Algorithm for the Block Relocation Problem. Comput. Oper. Res. 2019, 103, 252–264. [Google Scholar] [CrossRef]
- Zhu, M.; Fan, X.; He, Q. A Heuristic Approach for Transportation Planning Optimization in Container Yard. In Proceedings of the 2010 IEEE International Conference on Industrial Engineering and Engineering Management, Macau, China, 7–10 December 2010; IEEE: New York, NY, USA, 2010; pp. 1766–1770. [Google Scholar]
- Hakan Akyüz, M.; Lee, C.-Y. A Mathematical Formulation and Efficient Heuristics for the Dynamic Container Relocation Problem. Nav. Res. Logist. NRL 2014, 61, 101–118. [Google Scholar] [CrossRef]
- Gulić, M.; Maglić, L.; Krljan, T.; Maglić, L. Solving the Container Relocation Problem by Using a Metaheuristic Genetic Algorithm. Appl. Sci. 2022, 12, 7397. [Google Scholar] [CrossRef]
- Junqueira, C.; de Azevedo, A.T.; Ohishi, T. Solving the Integrated Multi-Port Stowage Planning and Container Relocation Problems with a Genetic Algorithm and Simulation. Appl. Sci. 2022, 12, 8191. [Google Scholar] [CrossRef]
- ElWakil, M.; Gheith, M.; Eltawil, A. A New Simulated Annealing Based Method for the Container Relocation Problem. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1432–1437. [Google Scholar]
- Wang, R.; Li, J.; Bai, R.; Wang, L. Storage Strategy of Outbound Containers with Uncertain Weight by Data-Driven Hybrid Genetic Simulated Annealing Algorithm. PLoS ONE 2023, 18, e0277890. [Google Scholar] [CrossRef]
- Zehendner, E.; Feillet, D. A Branch and Price Approach for the Container Relocation Problem. Int. J. Prod. Res. 2014, 52, 7159–7176. [Google Scholar] [CrossRef]
- Zehendner, E.; Caserta, M.; Feillet, D.; Schwarze, S.; Voß, S. An Improved Mathematical Formulation for the Blocks Relocation Problem. Eur. J. Oper. Res. 2015, 245, 415–422. [Google Scholar] [CrossRef]
- Boysen, N.; Emde, S. The Parallel Stack Loading Problem to Minimize Blockages. Eur. J. Oper. Res. 2016, 249, 618–627. [Google Scholar] [CrossRef]
- Le, X.T.; Knust, S. MIP-Based Approaches for Robust Storage Loading Problems with Stacking Constraints. Comput. Oper. Res. 2017, 78, 138–153. [Google Scholar] [CrossRef]
- Lin, X.; Huang, X. Mathematical Model Analysis of Container Terminal Yard. Adv. Appl. Math. 2023, 12, 830. [Google Scholar] [CrossRef]
- Du, Y.; Xu, G. Data Analysis and Application of Container Relocation in Terminal Yard Stowage. Containerization 2024, 35, 5–8. [Google Scholar] [CrossRef]
- Kim, K.H.; Hong, G.-P. A Heuristic Rule for Relocating Blocks. Comput. Oper. Res. 2006, 33, 940–954. [Google Scholar] [CrossRef]
- Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J.M. An Exact Approach for the Blocks Relocation Problem. Expert Syst. Appl. 2015, 42, 6408–6422. [Google Scholar] [CrossRef]
- Zhu, W.; Qin, H.; Lim, A.; Zhang, H. Iterative Deepening A* Algorithms for the Container Relocation Problem. IEEE Trans. Autom. Sci. Eng. 2012, 9, 710–722. [Google Scholar] [CrossRef]
- Tanaka, S.; Takii, K. A Faster Branch-and-Bound Algorithm for the Block Relocation Problem. IEEE Trans. Autom. Sci. Eng. 2016, 13, 181–190. [Google Scholar] [CrossRef]
- Ye, R.; Ye, R.; Zheng, S. Machine Learning Guides the Solution of Blocks Relocation Problem in Container Terminals. Transp. Res. Rec. J. Transp. Res. Board 2023, 2677, 721–737. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, Z.; Chen, Y.; Lu, J.; Huang, S.; Zhang, J. Regulating the Imbalance for the Container Relocation Problem: A Deep Reinforcement Learning Approach. Comput. Ind. Eng. 2024, 191, 110111. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, Z.; Chen, J.; Jiang, G. Large Containership Stowage Planning for Maritime Logistics: A Novel Meta-Heuristic Algorithm to Reduce the Number of Shifts. Adv. Eng. Inform. 2025, 64, 102962. [Google Scholar] [CrossRef]
- Bacci, T.; Mattia, S.; Ventura, P. The Realization-Independent Reallocation Heuristic for the Stochastic Container Relocation Problem. Soft Comput. 2023, 27, 4223–4233. [Google Scholar] [CrossRef]
- Đurasević, M.; Đumić, M.; Čorić, R.; Gil-Gala, F.J. Automated Design of Relocation Rules for Minimising Energy Consumption in the Container Relocation Problem. Expert Syst. Appl. 2024, 237, 121624. [Google Scholar] [CrossRef]
Notation | Description of Notation |
---|---|
set of stack s, indexed from 1 to S | |
set of tier h, indexed from 1 to H | |
set of container number n, indexed from 1 to N | |
set of container’s retrieve stage t, each stage containing one or more container relocation operation (nonessential) and one retrieve operation (essential), indexed from 1 to T |
Notation | Description of Notation |
---|---|
If container n is located in a slot in stage t, it is 1; otherwise, it is 0 | |
If container n is relocated from slot (s, h) to (s′, h′) in stage t, it is 1; otherwise, it is 0 | |
If the container n is retrieved from slot (s, h) in stage t, it is 1; otherwise, it is 0 | |
If container n has been retrieved in stage t, it is 1; otherwise, it is 0 |
H | S | N | INST | SOA | S-IDB&B | S-B&B [20] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (s) | Opt | Time (s) | Opt | Node | Time (s) | Opt | Node | ||||
3 | 3 | 7 | 100 | 0.000 | 100 | 0.000 | 100 | 0 | 0.001 | 100 | 5.2 |
4 | 10 | 100 | 0.000 | 100 | 0.001 | 100 | 0 | 0.001 | 100 | 11.7 | |
5 | 13 | 100 | 0.000 | 100 | 0.001 | 100 | 0 | 0.006 | 100 | 18.5 | |
6 | 15 | 100 | 0.000 | 100 | 0.004 | 100 | 0.25 | 0.007 | 100 | 22.3 | |
6 | 16 | 100 | 0.000 | 100 | 0.004 | 100 | 1.1 | 0.007 | 100 | 31.8 | |
6 | 17 | 100 | 0.000 | 100 | 0.004 | 100 | 0.05 | 0.008 | 100 | 35.2 | |
4 | 4 | 14 | 100 | 0.000 | 100 | 0.004 | 100 | 1.3 | 0.006 | 100 | 27.5 |
5 | 17 | 100 | 0.000 | 98 | 0.004 | 100 | 0.8 | 0.011 | 100 | 50.6 | |
6 | 21 | 100 | 0.000 | 95 | 0.005 | 100 | 3.04 | 0.015 | 100 | 76.2 | |
6 | 22 | 100 | 0.000 | 95 | 0.006 | 100 | 34.7 | 0.018 | 100 | 129.0 | |
6 | 23 | 100 | 0.000 | 95 | 0.006 | 100 | 80.4 | 0.023 | 100 | 180.2 |
H | S | N | INST | SOA | S-IDB&B | S-B&B [20] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (s) | Opt | Time (s) | Opt | Node | Time (s) | Opt | Node | ||||
4 | 7 | 26 | 100 | 0.001 | 92 | 0.007 | 100 | 6.7 × 102 | 0.061 | 100 | 4.8 × 103 |
8 | 30 | 100 | 0.002 | 98 | 0.007 | 100 | 1.2 × 103 | 0.495 | 100 | 6.1 × 104 | |
9 | 34 | 100 | 0.002 | 96 | 0.012 | 100 | 8.5 × 103 | 4.72 | 100 | 9.2 × 105 | |
10 | 37 | 100 | 0.004 | 94 | 0.023 | 100 | 2.2 × 104 | 52.6 | 100 | 1.2 × 107 | |
5 | 7 | 32 | 100 | 0.001 | 77 | 0.042 | 100 | 6.3 × 105 | 9.28 | 100 | 8.2 × 106 |
8 | 37 | 100 | 0.002 | 66 | 0.054 | 100 | 7.9 × 106 | 26.3 | 100 | 5.3 × 107 | |
9 | 42 | 100 | 0.047 | 54 | 7.13 | 99 | 1.7 × 107 | 208.3 | 100 | 1.6 × 108 | |
10 | 47 | 100 | 0.052 | # | 18.1 | 97 | 4.5 × 107 | / | # | # | |
6 | 7 | 38 | 100 | 0.031 | # | 75.6 | 95 | 1.2× 108 | / | # | # |
8 | 44 | 100 | 0.048 | # | 286.3 | 92 | 2.5 × 108 | / | # | # | |
9 | 50 | 100 | 0.062 | # | 472.6 | 86 | 3.8 × 108 | / | # | # | |
10 | 56 | 100 | 0.061 | # | 608.8 | 80 | 4.3 × 108 | / | # | # |
H | S | N | INST | SOA | RB [18] | Min-Max [7] | |||
---|---|---|---|---|---|---|---|---|---|
Time (s) | Relo | Time (s) | Relo | Time (s) | Relo | ||||
4 | 7 | 26 | 40 | 0.001 | 16.51 | 0.003 | 17.23 | 0.002 | 18.51 |
8 | 30 | 40 | 0.002 | 18.66 | 0.025 | 19.62 | 0.007 | 20.28 | |
9 | 34 | 40 | 0.002 | 20.61 | 0.023 | 21.58 | 0.013 | 21.64 | |
10 | 37 | 40 | 0.004 | 21.94 | 0.005 | 22.73 | 0.003 | 24.18 | |
5 | 7 | 32 | 40 | 0.001 | 19.57 | 0.003 | 21.92 | 0.001 | 21.86 |
8 | 37 | 40 | 0.002 | 22.61 | 0.036 | 24.27 | 0.026 | 23.94 | |
9 | 42 | 40 | 0.047 | 25.07 | 0.076 | 27.06 | 0.038 | 26.72 | |
10 | 47 | 40 | 0.052 | 28.73 | 0.017 | 30.76 | 0.074 | 31.26 | |
6 | 7 | 38 | 40 | 0.031 | 25.12 | 0.024 | 27.73 | 0.039 | 27.86 |
8 | 44 | 40 | 0.048 | 28.56 | 0.054 | 30.64 | 0.034 | 32.49 | |
9 | 50 | 40 | 0.062 | 30.51 | 0.059 | 34.57 | 0.045 | 36.61 | |
10 | 56 | 40 | 0.061 | 33.29 | 0.051 | 37.79 | 0.087 | 38.26 |
S × H | INST | S-IDB&B | Beam Search [18] | Corridor Method [9] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ulga 2% | Ulgap ≤ 5% | Ulgap ≤ 10% | |||||||||
Relo | Time | Relo | Time | Relo | Time | Relo | Time | Relo | Time | ||
6 × 3 | 40 | 260 | 0.03 | 260 | 0.03 | 260 | 0.03 | 260 | 0.02 | 260 | 0.02 |
7 × 3 | 40 | 306 | 0.03 | 306 | 0.03 | 306 | 0.03 | 306 | 0.02 | 306 | 0.02 |
8 × 3 | 40 | 355 | 0.10 | 355 | 0.10 | 355 | 0.10 | 355 | 0.05 | 355 | 0.05 |
9 × 3 | 40 | 409 | 0.16 | 409 | 0.16 | 409 | 0.16 | 409 | 0.10 | 409 | 0.10 |
10 × 3 | 40 | 457 | 0.38 | 457 | 0.38 | 457 | 0.38 | 457 | 0.32 | 457 | 0.32 |
6 × 4 | 40 | 474 | 0.38 | 474 | 0.38 | 474 | 0.38 | 474 | 0.32 | 474 | 0.32 |
7 × 4 | 40 | 552 | 0.48 | 552 | 0.43 | 552 | 0.43 | 624 | 0.30 | 635 | 0.30 |
8 × 4 | 40 | 633 | 0.48 | 633 | 0.45 | 697 | 0.43 | 760 | 0.30 | 728 | 0.30 |
9 × 4 | 40 | 706 | 0.77 | 706 | 0.56 | 777 | 0.43 | 848 | 0.32 | 812 | 0.32 |
10 × 4 | 40 | 798 | 0.38 | 798 | 0.38 | 861 | 0.38 | 979 | 0.30 | 939 | 0.30 |
6 × 5 | 40 | 724 | 1.54 | 724 | 1.02 | 781 | 0.77 | 852 | 0.32 | 866 | 0.35 |
7 × 5 | 40 | 852 | 7.30 | 877 | 4.30 | 919 | 2.30 | 1002 | 0.34 | 1027 | 0.38 |
8 × 5 | 40 | 972 | 139.39 | 1000 | 30.60 | 1048 | 3.84 | 1095 | 1.09 | 1143 | 1.20 |
9 × 5 | 40 | 1070 | 52.99 | 1102 | 17.20 | 1154 | 5.76 | 1259 | 2.10 | 1206 | 2.31 |
10 × 5 | 40 | 1186 | 434.30 | 1221 | 42.70 | 1279 | 7.68 | 1454 | 3.00 | 1396 | 3.30 |
6 × 6 | 40 | 1010 | 405.89 | 1039 | 58.30 | 1089 | 9.98 | 1138 | 1.31 | 1188 | 1.44 |
7 × 6 | 40 | 1155 | 2077.82 | 1189 | 70.60 | 1246 | 15.74 | 1359 | 2.76 | 1302 | 3.04 |
8 × 6 | 40 | 1311 | 5536.13 | 1350 | 94.62 | 1414 | 21.50 | 1607 | 4.47 | 1569 | 4.24 |
9 × 6 | 40 | 1462 | 9912.19 | 1505 | 118.27 | 1577 | 26.88 | 1792 | 6.61 | 1720 | 6.28 |
10 × 6 | 40 | 1600 | 15,421.82 | 1647 | 133.06 | 1725 | 29.57 | 1882 | 9.15 | 1913 | 8.70 |
6 × 7 | 40 | # | / | 1282 | 124.42 | 1343 | 27.65 | 1465 | 3.59 | 1526 | 3.41 |
7 × 7 | 40 | # | / | 1457 | 160.36 | 1527 | 33.41 | 1666 | 6.07 | 1693 | 5.77 |
8 × 7 | 40 | # | / | 1625 | 174.99 | 1703 | 35.71 | 1858 | 9.66 | 1935 | 11.11 |
9 × 7 | 40 | # | / | 1808 | 191.92 | 1894 | 37.63 | 2066 | 14.39 | 2152 | 16.55 |
10 × 7 | 40 | # | / | 1979 | 203.52 | 2073 | 38.40 | 2261 | 19.39 | 2374 | 22.30 |
H | S | N | INST | S-IDB&B I | S-IDB&B II ( = 0.5, =0.8, = 0.3) | ||||
---|---|---|---|---|---|---|---|---|---|
Time | Opt | # Probe | Time | Opt | # Probe | ||||
4 | 7 | 26 | 100 | 0.007 | 100 | 6.7 × 102 | 0.007 | 100 | 6.5 × 102 |
8 | 30 | 100 | 0.007 | 100 | 1.2 × 103 | 0.007 | 100 | 1.1 × 103 | |
9 | 34 | 100 | 0.012 | 100 | 8.5 × 103 | 0.012 | 100 | 7.2 × 103 | |
10 | 37 | 100 | 0.023 | 100 | 2.2 × 104 | 0.022 | 100 | 2.1 × 104 | |
5 | 7 | 32 | 100 | 0.042 | 100 | 6.3 × 105 | 0.041 | 100 | 5.7 × 105 |
8 | 37 | 100 | 0.054 | 100 | 7.9 × 106 | 0.057 | 100 | 7.6 × 106 | |
9 | 42 | 100 | 7.13 | 99 | 1.7 × 107 | 16.82 | 99 | 1.6 × 107 | |
10 | 47 | 100 | 18.1 | 97 | 4.5 × 107 | 22.3 | 97 | 4.1 × 107 | |
6 | 7 | 38 | 100 | 75.6 | 95 | 1.2 × 108 | 72.6 | 95 | 9.7 × 107 |
8 | 44 | 100 | 286.3 | 92 | 2.5 × 108 | 261.4 | 92 | 2.2 × 108 | |
9 | 50 | 100 | 472.6 | 86 | 3.8 × 108 | 436.3 | 86 | 3.4 × 108 | |
10 | 56 | 100 | 608.8 | 80 | 4.3 × 108 | 553.6 | 80 | 3.7 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, J. The Optimization of Container Relocation in Terminal Yards: A Computational Study Using Strategy-Iterative Deepening Branch-and-Bound Algorithm. J. Mar. Sci. Eng. 2025, 13, 1743. https://doi.org/10.3390/jmse13091743
Zhang J, Zhu J. The Optimization of Container Relocation in Terminal Yards: A Computational Study Using Strategy-Iterative Deepening Branch-and-Bound Algorithm. Journal of Marine Science and Engineering. 2025; 13(9):1743. https://doi.org/10.3390/jmse13091743
Chicago/Turabian StyleZhang, Jiangbei, and Jin Zhu. 2025. "The Optimization of Container Relocation in Terminal Yards: A Computational Study Using Strategy-Iterative Deepening Branch-and-Bound Algorithm" Journal of Marine Science and Engineering 13, no. 9: 1743. https://doi.org/10.3390/jmse13091743
APA StyleZhang, J., & Zhu, J. (2025). The Optimization of Container Relocation in Terminal Yards: A Computational Study Using Strategy-Iterative Deepening Branch-and-Bound Algorithm. Journal of Marine Science and Engineering, 13(9), 1743. https://doi.org/10.3390/jmse13091743