Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Surveys
2.2. Analysis of Bottom Water Physicochemical Parameters
2.3. Geochemical Analysis
2.3.1. Mineralogical Composition (XRD)
2.3.2. Organic Matter Content Determination (LOI)
2.3.3. Carbonate Content Determination
2.4. Granulometric Analysis
2.5. Map Generation
2.6. Statistical Analyses
3. Results
3.1. Bottom Water Properties
3.2. Sediment Granulometric Distribution
3.3. The Distribution of Carbonates and Organic Carbon
3.4. Mineralogical Assemblage
4. Discussion
4.1. Interaction Between Sedimentological and Hydrological Parameters
4.2. Carbonate Distribution: Biogenic Production, Dissolution, and Environmental Controls
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NW Africa | Northwest Africa |
DO | Dissolved oxygen |
Sal | Salinity |
CaCO3 | Calcium carbonate |
Corg | Organic carbon |
CTD | Conductivity, Temperature, and Depth sensor |
XRD | X-ray diffraction |
References
- Ridgwell, A.; Zeebe, R. The Role of the Global Carbonate Cycle in the Regulation and Evolution of the Earth System. Earth Planet. Sci. Lett. 2005, 234, 299–315. [Google Scholar] [CrossRef]
- Schneider, R.R.; Schulz, H.D.; Hensen, C. Marine Carbonates: Their Formation and Destruction. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 311–337. ISBN 978-3-540-32143-9. [Google Scholar]
- Zeebe, R.E.; Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2001; Volume 65, pp. 1–346. ISBN 978-0-444-50946-8. [Google Scholar]
- Feely, R.A.; Sabine, C.L.; Byrne, R.H.; Millero, F.J.; Dickson, A.G.; Wanninkhof, R.; Murata, A.; Miller, L.A.; Greeley, D. Decadal Changes in the Aragonite and Calcite Saturation State of the Pacific Ocean. Glob. Biogeochem. Cycles 2012, 26, GB3001. [Google Scholar] [CrossRef]
- Bozzano, G.; Alonso, B. Transfer of Organic Carbon on the Moroccan Atlantic Continental Margin (NW Africa): Productivity and Lateral Advection. Geo-Mar. Lett. 2009, 29, 277–289. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S. The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. Earth-Sci. Rev. 2002, 58, 51–84. [Google Scholar] [CrossRef]
- Burton, E.A.; Walter, L.M. Relative Precipitation Rates of Aragonite and Mg Calcite from Seawater: Temperature or Carbonate Ion Control? Geology 1987, 15, 111. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Y.; Ma, Q.; He, H.; Wang, S.; Sun, Z.; Cai, W.-J.; Dong, B.; Di, Y.; Fu, W.; et al. The Role of Mg2+ in Inhibiting CaCO3 Precipitation from Seawater. Mar. Chem. 2021, 237, 104036. [Google Scholar] [CrossRef]
- Stuut, J.; Zabel, M.; Ratmeyer, V.; Helmke, P.; Schefuß, E.; Lavik, G.; Schneider, R. Provenance of Present-day Eolian Dust Collected off NW Africa. J. Geophys. Res. 2005, 110, D04202. [Google Scholar] [CrossRef]
- Nait-Hammou, H.; El Khalidi, K.; Khalfaoui, O.; Makaoui, A.; Chierici, M.; Jamal, C.; Idrissi, M.; Zourarah, B. Sediment Provenance and Distribution on the Northwest African Continental Shelf. JMSE 2025, 13, 537. [Google Scholar] [CrossRef]
- Hales, B. Respiration, Dissolution, and the Lysocline. Paleoceanography 2003, 18, 1099. [Google Scholar] [CrossRef]
- Perry, C.T.; Taylor, K.G. Inhibition of Dissolution within Shallow Water Carbonate Sediments: Impacts of Terrigenous Sediment Input on Syn-Depositional Carbonate Diagenesis. Sedimentology 2006, 53, 495–513. [Google Scholar] [CrossRef]
- Michel, J.; Laugié, M.; Pohl, A.; Lanteaume, C.; Masse, J.-P.; Donnadieu, Y.; Borgomano, J. Marine Carbonate Factories: A Global Model of Carbonate Platform Distribution. Int. J. Earth Sci. 2019, 108, 1773–1792. [Google Scholar] [CrossRef]
- Bednaršek, N.; Johnson, J.; Feely, R.A. Comment on Peck et al.: Vulnerability of Pteropod (Limacina helicina) to Ocean Acidification: Shell Dissolution Occurs despite an Intact Organic Layer. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 127, 53–56. [Google Scholar] [CrossRef]
- Duchez, A.; Frajka-Williams, E.; Castro, N.; Hirschi, J.; Coward, A. Seasonal to Interannual Variability in Density around the Canary Islands and Their Influence on the Atlantic Meridional Overturning Circulation at 26° N. J. Geophys. Res. Ocean. 2014, 119, 1843–1860. [Google Scholar] [CrossRef]
- Makaoui, A. Étude Hydrologique de L’upwelling Côtier Marocain et sa Contribution à la Sédimentologie du Plateau Continental. Ph.D. Thesis, Faculté des Sciences Ben M’Sik, Université Hassan II, Casablanca, Morocco, 2008. [Google Scholar]
- Rowland, G.H.; Robinson, L.F.; Hendry, K.R.; Ng, H.C.; McGee, D.; McManus, J.F. The Spatial Distribution of Aeolian Dust and Terrigenous Fluxes in the Tropical Atlantic Ocean Since the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004148. [Google Scholar] [CrossRef]
- McMaster, R.L.; Lachance, T.P. Northwestern African Continental Shelf Sediments. Mar. Geol. 1969, 7, 57–67. [Google Scholar] [CrossRef]
- Summerhayes, C.P.; Milliman, J.D.; Briggs, S.R.; Bee, A.G.; Hogan, C. Northwest African Shelf Sediments: Influence of Climate and Sedimentary Processes. J. Geol. 1976, 84, 277–300. [Google Scholar] [CrossRef]
- Guerreiro, C.V.; Ferreira, A.; Cros, L.; Stuut, J.-B.; Baker, A.; Tracana, A.; Pinto, C.; Veloso, V.; Rees, A.P.; Cachão, M.A.P.; et al. Response of Coccolithophore Communities to Oceanographic and Atmospheric Processes across the North- and Equatorial Atlantic. Front. Mar. Sci. 2023, 10, 1119488. [Google Scholar] [CrossRef]
- Baumann, K.-H.; Böckel, B.; Frenz, M. Coccolith Contribution to South Atlantic Carbonate Sedimentation. In Coccolithophores; Thierstein, H.R., Young, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 367–402. ISBN 978-3-642-06016-8. [Google Scholar]
- Jamal, C.; Makaoui, A.; Chierici, M.; Cervantes, D.; Chair, A.; Hammou, H.N.; Idrissi, M.; Bouthir, F.Z.; Ettahiri, O.; Yousfi, S.; et al. Seasonal Upwelling Drives Surface Water Biogeochemistry with Implication for Ocean Acidification along the Northwest African Coast. Front. Mar. Sci. 2025, 12, 1579941. [Google Scholar] [CrossRef]
- Feely, R.; Chris, S.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.; Millero, F. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef]
- Silva, C.A.R.; de Godoy Fernandes, L.V.; de Souza, F.E.S.; Marotta, H.; da Costa Fernandes, F.; Mello, T.M.S.; Monteiro, N.S.C.; Rocha, A.A.; Coutinho, R.; de Almeida Fernandes, L.D.; et al. Carbonate System in the Cabo Frio Upwelling. Sci. Rep. 2023, 13, 5292. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Mayall, M. Deep-Water Sedimentary Systems: New Models for the 21st Century. Mar. Pet. Geol. 2000, 17, 125–135. [Google Scholar] [CrossRef]
- Hernández-Guerra, A.; Espino-Falcón, E.; Vélez-Belchí, P.; Dolores Pérez-Hernández, M.; Martínez-Marrero, A.; Cana, L. Recirculation of the Canary Current in Fall 2014. J. Mar. Syst. 2017, 174, 25–39. [Google Scholar] [CrossRef]
- Allain, C. Les Conditions Hydrologiques Sur La Bordure Atlantique de l’Afrique Du Nord-Ouest. Rapp. Procès-Verbaux Réunions Cons. Int. Pour L’exploration Mer 1970, 159, 25–29. [Google Scholar]
- Jones, P.G.W.; Folkard, A.R. Chemical Oceanographic Observations off the Coast of North-West Africa, with Special Reference to the Process of Upwelling. Met Office Library Reports. Available online: https://library.metoffice.gov.uk/portal/Default/en-GB/RecordView/Index/61929 (accessed on 2 February 2025).
- Pelegrí, J.L.; Arístegui, J.; Cana, L.; González-Dávila, M.; Hernández-Guerra, A.; Hernández-León, S.; Marrero-Díaz, A.; Montero, M.F.; Sangrà, P.; Santana-Casiano, M. Coupling between the Open Ocean and the Coastal Upwelling Region off Northwest Africa: Water Recirculation and Offshore Pumping of Organic Matter. J. Mar. Syst. 2005, 54, 3–37. [Google Scholar] [CrossRef]
- Kabbachi, B.; Regragui, A.; El Youssi, M.; El Foughali, A. Physiographie de la marge Atlantique entre Tan Tan et Tarfaya: Etude sédimentaire et morphostructura. In Proceedings of the Réunion des Sciences de la Terre (RST 98: Penser la Terre), Brest, France, 1 March 1998; Société Géologique de France: Paris, France; p. 137. [Google Scholar]
- Moujane, A.; Chagdali, M.; Blanke, B.; Mordane, S. Impact Des Vents Sur l’upwelling Au Sud Du Maroc; Apport Du Modèle ROMS Forcé Par Les Données ALADIN et QuikSCAT. Bull. L’institut Sci. Rabat Sect. Sci. Terre 2011, 33, 53–64. [Google Scholar]
- Makaoui, A.; Idrissi, M.; Benazzouz, A.; Ait Laamel, M.; Agouzouk, A.; Larissi, J.; Hilmi, K. Hydrological Variability of the Upwelling and the Filament in Cape Juby (28° N) Morocco (2010). Int. J. Adv. Res. 2015, 3, 9–26. [Google Scholar]
- Makaoui, A.; Bessa, I.; Agouzouk, A.; Idrissi, M.; Belabchir, Y.; Hilmi, K.; Omar, E. The Variability of the Cape Boujdour Upwelling and Its Relationship with the Cape Blanc Frontal Zone (Morocco). Front. Sci. Eng. Int. J. 2021, 11, 19–27. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- NF X31-109; Soil Quality: Determination of the Carbonate Content, Calcimeter Method. Association Française de Normalisation: Paris, France, 1993.
- Schlitzer, R. Ocean Data View; Version 5.6.4; Alfred Wegener Institute: Bremerhaven, Germany, 2023; Available online: https://odv.awi.de (accessed on 20 March 2024).
- QGIS Development Team. QGIS Geographic Information System; Version 3.28; Open Source Geospatial Foundation: Beaverton, OR, USA, 2022; Available online: https://qgis.org (accessed on 12 August 2024).
- Papageorgiou, S.N. On Correlation Coefficients and Their Interpretation. J. Orthod. 2022, 49, 359–361. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River Bar [Texas]; a Study in the Significance of Grain Size Parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Navarro-Blasco, I.; Sirera, R.; Pérez-Nicolás, M.; Duran, A.; Fernández, J.M.; Alvarez, J.I. Calcium Aluminate Cements as an Effective Matrix for Encapsulation of Hazardous Materials. In Proceedings of the 14th International Congress on the Chemistry of Cement (ICCC), Beijing, China, 13–16 October 2015; Volume II, p. 601. [Google Scholar]
- Nkoma, J.S.; Ekosse, G.; Abdus Salam International Centre for Theoretical Physics. X-Ray Diffraction Study of Layered Silicates: Kaolinite, Illite and Montmorrilonite; Abdus Salam International Centre for Theoretical Physics: Trieste, Italy, 1998. [Google Scholar]
- Mittelstaedt, E. The Ocean Boundary along the Northwest African Coast: Circulation and Oceanographic Properties at the Sea Surface. Prog. Oceanogr. 1991, 26, 307–355. [Google Scholar] [CrossRef]
- Berger, W.H. Planktonic Foraminifera: Selective Solution and the Lysocline. Mar. Geol. 1970, 8, 111–138. [Google Scholar] [CrossRef]
- Milliman, J.D. Production and Accumulation of Calcium Carbonate in the Ocean: Budget of a Nonsteady State. Glob. Biogeochem. Cycles 1993, 7, 927–957. [Google Scholar] [CrossRef]
- Schulz, H.D. Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 73–124. ISBN 978-3-540-32144-6. [Google Scholar]
- Lin, Z.; Strauss, H.; Zhao, M.; Halevy, I. Editorial: The effects of early diagenesis in various marine environments on the stable isotope records of environmental conditions and biogeochemical processes. Front. Mar. Sci. 2023, 10, 1161577. [Google Scholar] [CrossRef]
- Jamal, C.; Makaoui, A.; Chierici, M.; Agouzouk, A.; Nait Hammou, H.; Chair, A.; Idrissi, M.; Ettahiri, O.; Bouthir, F.Z.; M’bengue, B.; et al. Spatial and Temporal Variability of Coastal Upwelling Activity in Northwest Africa (1994–2022). Sci. Afr. 2025, 29, e02831. [Google Scholar] [CrossRef]
- Emerson, S.; Bender, M. Carbon Fluxes at the Sediment-Water Interface of the Deep-Sea: Calcium Carbonate Preservation. J. Mar. Res. 1981, 39, 139–162. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Houssa, R.; M’bengue, B.; Nyadjro, E.S.; Cervantes, D.; Idrissi, M.; Mahu, E.; Dia, A.S.; Olsen, M.; Mas, C.; et al. Lophelia Reefs off North and West Africa–Comparing Environment and Health. Mar. Biol. 2024, 171, 29. [Google Scholar] [CrossRef]
- Jørgensen, B.B. Bacterial Sulfate Reduction within Reduced Microniches of Oxidized Marine Sediments. Mar. Biol. 1977, 41, 7–17. [Google Scholar] [CrossRef]
- Alves Martins, M.V.; Hohenegger, J.; Frontalini, F.; Sequeira, C.; Miranda, P.; Rodrigues, M.A.D.C.; Duleba, W.; Laut, L.; Rocha, F. Foraminifera check list and the main species distribution in the Aveiro Lagoon and adjacent continental shelf (Portugal). J. Sediment. Environ. 2019, 4, 1–52. [Google Scholar] [CrossRef]
- Jaaidi, E.B. Les Environnements Sédimentaires Actuels et Pléistocènes du Plateau Continental Atlantique Marocain Entre Larache et Agadir. Ph.D. Thesis, Université Bordeaux I, Bordeaux, France, 1981. No. 1712. 189p. [Google Scholar]
- Ali, S.; Stattegger, K.; Liu, Z.; Khélifi, N.; Kuhnt, W. Paleoclimatic and Paleoenvironmental Reconstruction at Tarfaya Atlantic Coastal Basin (Morocco) Based on Clay Mineral Records from Upper Cretaceous to Quaternary. Arab. J. Geosci. 2018, 12, 6. [Google Scholar] [CrossRef]
- Li, Y.-H.; Schoonmaker, J.E. Chemical Composition and Mineralogy of Marine Sediments. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–35. ISBN 978-0-08-043751-4. [Google Scholar]
- Govin, A.; Holzwarth, U.; Heslop, D.; Ford Keeling, L.; Zabel, M.; Mulitza, S.; Collins, J.A.; Chiessi, C.M. Distribution of Major Elements in Atlantic Surface Sediments (36° N–49° S): Imprint of Terrigenous Input and Continental Weathering. Geochem. Geophys. Geosyst. 2012, 13, Q01013. [Google Scholar] [CrossRef]
- Barcellos, R.L.; Da Silva Sales De Melo, M.C.; Sial, A.N.; Vaz Manso, V.D.A. Sedimentary Organic Matter Characterization on a Tropical Continental Shelf in Northeastern Brazil. Int. J. Geosci. 2020, 11, 393–419. [Google Scholar] [CrossRef]
- Spalding, C.; Finnegan, S.; Fischer, W.W. Energetic Costs of Calcification under Ocean Acidification. Glob. Biogeochem. Cycles 2017, 31, 866–877. [Google Scholar] [CrossRef]
Station | Longitude | Latitude | Depth (m) | Collected Samples |
---|---|---|---|---|
1 | 12°45′54.0” W | 28°15′56.9” N | 101 | Sediments and water |
2 | 13°06′53.3” W | 28°19′46.9” N | 500 | |
3 | 12°55′39.0” W | 27°57′51.0” N | 29 | |
4 | 13°03′01.0” W | 28° 00′35.9” N | 44 | |
5 | 13°09′54.7” W | 28° 07′02.6” N | 101 | |
6 | 13°14′15.0” W | 28°11′07.8” N | 510 | |
7 | 13°15′15.0” W | 27°37′08.4” N | 20 | |
8 | 13°24′26.5” W | 27°53′32.4” N | 550 | |
9 | 13°22′25.7” W | 27°20′18.6” N | 20 | |
10 | 13°27′34.2” W | 27°16′40.8” N | 40 | |
11 | 13°26′39.0” W | 27°11′01.7” N | 18 | |
12 | 13°29′46.2” W | 27°11′13.2” N | 50 | |
13 | 13°38′04.2” W | 27°14′17.5” N | 100 | |
14 | 13°42′14.4” W | 27°15′35.3” N | 559 | |
15 | 13°29′58.9” W | 27° 01′ 35.4” N | 20 | |
16 | 13°35′42.0” W | 27°05′33.0” N | 72 | |
17 | 13°36′37.8” W | 26°43′21.7” N | 18 | |
18 | 14°09′55.1” W | 26°45′42.1” N | 520 | |
19 | 14°14′43.1” W | 26°26′21.1” N | 20 | |
20 | 14°29′30.1” W | 26°11′08.5” N | 16 | |
21 | 15°04′02.3” W | 26°11′42.0” N | 513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nait-Hammou, H.; El Khalidi, K.; Makaoui, A.; Chierici, M.; Jamal, C.; Mejjad, N.; Khalfaoui, O.; Salhi, F.; Idrissi, M.; Zourarah, B. Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System. J. Mar. Sci. Eng. 2025, 13, 1709. https://doi.org/10.3390/jmse13091709
Nait-Hammou H, El Khalidi K, Makaoui A, Chierici M, Jamal C, Mejjad N, Khalfaoui O, Salhi F, Idrissi M, Zourarah B. Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System. Journal of Marine Science and Engineering. 2025; 13(9):1709. https://doi.org/10.3390/jmse13091709
Chicago/Turabian StyleNait-Hammou, Hasnaa, Khalid El Khalidi, Ahmed Makaoui, Melissa Chierici, Chaimaa Jamal, Nezha Mejjad, Otmane Khalfaoui, Fouad Salhi, Mohammed Idrissi, and Bendahhou Zourarah. 2025. "Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System" Journal of Marine Science and Engineering 13, no. 9: 1709. https://doi.org/10.3390/jmse13091709
APA StyleNait-Hammou, H., El Khalidi, K., Makaoui, A., Chierici, M., Jamal, C., Mejjad, N., Khalfaoui, O., Salhi, F., Idrissi, M., & Zourarah, B. (2025). Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System. Journal of Marine Science and Engineering, 13(9), 1709. https://doi.org/10.3390/jmse13091709