A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels
Abstract
1. Introduction
- Algorithmic-focused reviews, which predominantly synthesize the technical details of collision avoidance algorithms but rarely establish connections between algorithmic characteristics and testing/evaluation systems.
- Testing-centric studies, which elaborate on virtual simulations, model tests, or full-scale trials yet lack an in-depth analysis of how algorithmic performance varies across different testing frameworks.
- Standardization-oriented surveys, which discuss the regulatory progress (such as the IMO MASS Code) without integrating algorithmic adaptability and testing system design into the standardization discourse.
- It addresses the lack of integrated comparison between algorithms and testing systems. Previous studies either isolate algorithms from testing methods or treat them as independent entities, failing to clarify how to select testing strategies based on algorithmic features or how testing results can guide algorithm optimization.
- It tackles the insufficient emphasis on dynamic evaluation frameworks. Most reviews focus on static indices but overlook the need for dynamic index adjustments in mixed-traffic environments, such as adaptability to human-like maneuvering of conventional ships.
- It fills the absence of synthesis on standardization bottlenecks. While some studies mention international standards, they rarely analyze contradictions between current standards and algorithmic capabilities or propose feasible solutions to bridge these gaps.
2. Overview of Autonomous Collision Avoidance Algorithms for Intelligent Vessels
2.1. Situation Awareness Methods
2.2. Incorporating Behavior Prediction Methods
2.2.1. Evolution Process of Autonomous Collision Avoidance Algorithms
2.2.2. Autonomous Collision Avoidance Algorithms
Dynamic Window Approach
Velocity Obstacle Algorithm
Artificial Potential Field Algorithm
Model Predictive Control (MPC)
2.2.3. The Practical Implementation of COLREGs
2.2.4. Multi-Ship Scenario
3. Overview of Autonomous Collision Avoidance Performance Testing and Evaluation System for Intelligent Vessels
3.1. Construction of Autonomous Collision Avoidance Testing Scenarios
3.2. Virtual Simulation Testing
3.3. Physical Model Testing
3.4. Full-Scale Vessel Testing
3.5. Virtual–Real Fusion Testing
3.6. Evaluation Metrics for Autonomous Collision Avoidance of Intelligent Vessel
4. Discussion
4.1. Autonomous Collision Avoidance Algorithms for Intelligent Vessels
4.2. Autonomous Collision Avoidance Performance Testing and Evaluation System for Intelligent Vessels
- Lack of a complete scenario structure system. Existing methods have insufficient coverage of dynamic elements in collision avoidance scenarios, such as sudden vessel failures and non-standard navigation behaviors.
- Combinatorial explosion in multi-vessel encounters. When the testing scenario involves more than three dynamic target vessels, the parameter combinations of heading, speed, and relative position grow exponentially, leading to a sharp decline in the testing coverage of collision avoidance algorithms.
- Disconnection of scenario dynamics evolution. Traditional static scenarios fail to simulate dynamic interactions such as wind-current interference and inter-vessel effects during collision avoidance, making it impossible to verify the algorithm’s adaptability to sudden situational changes.
- Construction of dynamic collision avoidance scenarios. Integrating real-time AIS trajectories with hydrodynamic models to generate dynamic collision avoidance scenarios involving wind-current coupling and vessel-shore interactions.
- Big data-driven mining of dangerous scenarios. Identifying high-frequency risk patterns from historical collision avoidance cases based on reinforcement learning to directionally generate high-risk test scenarios such as dense fog and bridge areas.
- Reconstruction of uncertain environments. Constructing non-ideal collision avoidance scenarios with sensor errors and communication delays by combining navigation risk quantification models.
- Scenario evolution driving methods. Designing state transition rules conforming to collision avoidance logic to achieve automatic deduction of full-process scenarios from routine encounters to critical dangers.
4.3. Testing and Evaluation Framework for Autonomous Collision Avoidance of Intelligent Ships
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yang, F.; Li, S.; Lv, Y.; Hu, X. Testing and Evaluation for Intelligent Navigation of Ships: Current Status, Possible Solutions, and Challenges. Ocean Eng. 2024, 295, 116969. [Google Scholar] [CrossRef]
- Rules for Intelligent Ships 2025. Available online: https://www.ccs.org.cn/ccswzen/specialDetail?id=202503310327204112 (accessed on 8 May 2025).
- Zhou, Z.Y. Research on Test Methods and Evaluation Metrics for Autonomous Collision Avoidance Performance of Intelligent Ships. Ph.D. Thesis, Dalian Maritime University, Dalian, China, 2024. [Google Scholar]
- Zhu, Q.; Xi, Y.; Weng, J.; Han, B.; Hu, S.; Ge, Y.-E. Intelligent ship collision avoidance in maritime field: A bibliometric and systematic review. Expert Syst. Appl. 2024, 252, 124148. [Google Scholar] [CrossRef]
- Lyu, H.; Hao, Z.; Li, J.; Li, G.; Sun, X.; Zhang, G.; Yin, Y.; Zhao, Y.; Zhang, L. Ship Autonomous Collision-Avoidance Strategies-A Comprehensive Review. J. Mar. Sci. Eng. 2023, 11, 830. [Google Scholar] [CrossRef]
- Du, L.; Goerlandt, F.; Valdez Banda, O.A.; Huang, Y.; Wen, Y.; Kujala, P. Improving stand-on ship’s situational awareness by estimating the intention of the give-way ship. Ocean Eng. 2020, 201, 107110. [Google Scholar] [CrossRef]
- Namgung, H. Local Route Planning for Collision Avoidance of Maritime Autonomous Surface Ships in Compliance with COLREGs Rules. Sustainability 2022, 14, 198. [Google Scholar] [CrossRef]
- Silveira, P.A.M.; Teixeira, A.P.; Soares, C.G. Use of AIS Data to Characterise Marine Traffic Patterns and Ship Collision Risk off the Coast of Portugal. J. Navig. 2013, 66, 879–898. [Google Scholar] [CrossRef]
- Sang, L.; Yan, X.; Wall, A.; Wang, J.; Mao, Z. CPA Calculation Method Based on AIS Position Prediction. J. Navig. 2016, 69, 1409–1426. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Z. Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN. J. Mar. Sci. Eng. 2020, 8, 682. [Google Scholar] [CrossRef]
- Gao, M.; Liang, M.; Zhang, A.; Hu, Y.; Zhu, J. Multi-Ship Encounter Situation Graph Structure Learning for Ship Collision Avoidance Based on AIS Big Data with Spatio-Temporal Edge and Node Attention Graph Convolutional Networks. Ocean Eng. 2024, 301, 117605. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.; Chung, D.; Kim, J. Navigable Area Detection and Perception-Guided Model Predictive Control for Autonomous Navigation in Narrow Waterways. IEEE Robot. Autom. Lett. 2023, 8, 5456–5463. [Google Scholar] [CrossRef]
- Fujii, Y.; Tanaka, K. Traffic Capacity. J. Navig. 1971, 24, 543–552. [Google Scholar] [CrossRef]
- Bakdi, A.; Glad, I.K.; Vanem, E. Testbed Scenario Design Exploiting Traffic Big Data for Autonomous Ship Trials Under Multiple Conflicts with Collision/Grounding Risks and Spatio-Temporal Dependencies. IEEE Trans. Intell. Transport. Syst. 2021, 22, 7914–7930. [Google Scholar] [CrossRef]
- Guo, Y.J.; Wang, H.D.; Zhang, D.K. Research on key issues of reliability test and verification of intelligent navigation system. China Ship Surv. 2023, 1, 48–51. [Google Scholar]
- Wang, S.J. South Korea’s intelligent ship development roadmap. China Ship Surv. 2024, 10, 48–53. [Google Scholar]
- Goodwin, E.M. A Statistical Study of Ship Domains. J. Navig. 1975, 28, 328–344. [Google Scholar] [CrossRef]
- James, M.K. Modelling the Decision Process in Computer Simulation of Ship Navigation. J. Navig. 1986, 39, 32–48. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Shi, C.-J. A Fuzzy-Neural Inference Network for Ship Collision Avoidance. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 8, pp. 4754–4759. [Google Scholar] [CrossRef]
- Gleeson, J.; Dunbabin, M.; Ford, J.J. COLREG Scenario Classification and Compliance Evaluation with Temporal and Multi-Vessel Awareness for Collision Avoidance Systems. Ocean Eng. 2024, 313, 119552. [Google Scholar] [CrossRef]
- Xie, W.; Gang, L.; Zhang, M.; Liu, T.; Lan, Z. Optimizing Multi-Vessel Collision Avoidance Decision Making for Autonomous Surface Vessels: A COLREGs-Compliant Deep Reinforcement Learning Approach. J. Mar. Sci. Eng. 2024, 12, 372. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Automat. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Ögren, P.; Leonard, N.E. A Provably Convergent Dynamic Window Approach to Obstacle Avoidance. IFAC Proc. Vol. 2002, 35, 115–120. [Google Scholar] [CrossRef]
- Molinos, E.J.; Llamazares, Á.; Ocaña, M. Dynamic Window Based Approaches for Avoiding Obstacles in Moving. Robot. Auton. Syst. 2019, 118, 112–130. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, H.; Tang, Z.; Song, W.; Lu, A. Path Planning of USV in Confined Waters Based on Improved A* and DWA Fusion Algorithm. Ocean Eng. 2025, 322, 120475. [Google Scholar] [CrossRef]
- Xu, D.; Yang, J.; Zhou, X.; Xu, H. Hybrid Path Planning Method for USV Using Bidirectional A* and Improved DWA Considering the Manoeuvrability and COLREGs. Ocean Eng. 2024, 298, 117210. [Google Scholar] [CrossRef]
- Song, R.; Papadimitriou, E.; Negenborn, R.R.; Gelder, P.V. Integrating Situation-Aware Knowledge Maps and Dynamic Window Approach for Safe Path Planning by Maritime Autonomous Surface Ships. Ocean Eng. 2024, 311, 118882. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Van Den Berg, J.; Lin, M.; Manocha, D. Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar] [CrossRef]
- Snape, J.; Berg, J.V.D.; Guy, S.J.; Manocha, D. The Hybrid Reciprocal Velocity Obstacle. IEEE Trans. Robot. 2011, 27, 696–706. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Liu, J.; Cai, W.; Wang, H. Collision-Avoidance Decision System for Inland Ships Based on Velocity Obstacle Algorithms. J. Mar. Sci. Eng. 2022, 10, 814. [Google Scholar] [CrossRef]
- Li, B.; Gong, J.; Zhao, X.; Cheng, X. Research on Ship Navigation Strategy in Dynamic Sea Ice Environments Based on Flexibility Velocity Obstacles Algorithm. Ocean Eng. 2024, 311, 118843. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Wang, H.; Lou, J. Dynamic Collision Avoidance for Maritime Autonomous Surface Ships Based on Deep Q-Network with Velocity Obstacle Method. Ocean Eng. 2025, 320, 120335. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, P.; Li, M.; Chen, L.; Mou, J. Regional Ship Collision Risk Assessment: An Integrated Approach Using Velocity Obstacle and Complex Network. IEEE Trans. Intell. Transport. Syst. 2025, 26, 1728–1742. [Google Scholar] [CrossRef]
- Yang, X.; Lou, M.; Hu, J.; Ye, H.; Zhu, Z.; Shen, H.; Xiang, Z.; Zhang, B. A Human-like Collision Avoidance Method for USVs Based on Deep Reinforcement Learning and Velocity Obstacle. Expert Syst. Appl. 2024, 254, 124388. [Google Scholar] [CrossRef]
- Yu, D.; Roh, M.-I. Method for Anti-Collision Path Planning Using Velocity Obstacle and A* Algorithms for Maritime Autonomous Surface Ship. Int. J. Nav. Archit. Ocean Eng. 2024, 16, 100586. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, J.; Liu, C.; Dai, H.; Huang, Y. Regulation Aware Dynamic Path Planning for Intelligent Ships with Uncertain Velocity Obstacles. Ocean Eng. 2023, 278, 114401. [Google Scholar] [CrossRef]
- Zhao, X.; He, Y.; Huang, L.; Mou, J.; Zhang, K.; Liu, X. Intelligent Collision Avoidance Method for Ships Based on COLRGEs and Improved Velocity Obstacle Algorithm. Appl. Sci. 2022, 12, 8926. [Google Scholar] [CrossRef]
- Chen, P.; Li, M.; Mou, J. A Velocity Obstacle-Based Real-Time Regional Ship Collision Risk Analysis Method. J. Mar. Sci. Eng. 2021, 9, 428. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Van Gelder, P.H.A.J.M. Generalized Velocity Obstacle Algorithm for Preventing Ship Collisions at Sea. Ocean Eng. 2019, 173, 142–156. [Google Scholar] [CrossRef]
- Huang, Y.; Van Gelder, P.H.A.J.M.; Wen, Y. Velocity Obstacle Algorithms for Collision Prevention at Sea. Ocean Eng. 2018, 151, 308–321. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Park, M.G.; Lee, M.C. A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning. KSME Int. J. 2003, 17, 1876–1885. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H.; Shao, X. An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems. IEEE Trans. Circuits Syst. II 2022, 69, 1129–1133. [Google Scholar] [CrossRef]
- Lyu, H.; Yin, Y. COLREGS-Constrained Real-Time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields. J. Navig. 2019, 72, 588–608. [Google Scholar] [CrossRef]
- Lazarowska, A. A Discrete Artificial Potential Field for Ship Trajectory Planning. J. Navig. 2020, 73, 233–251. [Google Scholar] [CrossRef]
- Langxiong, G.; Li, X.; Yan, T.; Song, L.; Xiao, J.; Shu, Y. Intelligent Ship Path Planning Based on Improved Artificial Potential Field in Narrow Inland Waterways. Ocean Eng. 2025, 317, 119928. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Huang, Y.; Yuan, Z.-M. A Path Planning Strategy Unified with a COLREGS Collision Avoidance Function Based on Deep Reinforcement Learning and Artificial Potential Field. Appl. Ocean Res. 2021, 113, 102759. [Google Scholar] [CrossRef]
- Zhu, Z.; Lyu, H.; Zhang, J.; Yin, Y. An Efficient Ship Automatic Collision Avoidance Method Based on Modified Artificial Potential Field. J. Mar. Sci. Eng. 2021, 10, 3. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, Y.; Lyu, H. Automatic Collision Avoidance Algorithm Based on Route-Plan-Guided Artificial Potential Field Method. Ocean Eng. 2023, 271, 113737. [Google Scholar] [CrossRef]
- Xu, X.; Pan, W.; Huang, Y.; Zhang, W. Dynamic Collision Avoidance Algorithm for Unmanned Surface Vehicles via Layered Artificial Potential Field with Collision Cone. J. Navig. 2020, 73, 1306–1325. [Google Scholar] [CrossRef]
- Lazarowska, A. Comparison of Discrete Artificial Potential Field Algorithm and Wave-Front Algorithm for Autonomous Ship Trajectory Planning. IEEE Access 2020, 8, 221013–221026. [Google Scholar] [CrossRef]
- Jadhav, A.K.; Pandi, A.R.; Somayajula, A. Collision Avoidance for Autonomous Surface Vessels Using Novel Artificial Potential Fields. Ocean Eng. 2023, 288, 116011. [Google Scholar] [CrossRef]
- Chen, X.; Gao, M.; Kang, Z.; Zhou, J.; Chen, S.; Liao, Z.; Sun, H.; Zhang, A. Formation of MASS Collision Avoidance and Path Following Based on Artificial Potential Field in Constrained Environment. J. Mar. Sci. Eng. 2022, 10, 1791. [Google Scholar] [CrossRef]
- Wang, Z.; Im, N. Enhanced Artificial Potential Field for MASS’s Path Planning Navigation in Restricted Waterways. Appl. Ocean Res. 2024, 149, 104052. [Google Scholar] [CrossRef]
- Suo, Y.; Chen, X.; Yue, J.; Yang, S.; Claramunt, C. An Improved Artificial Potential Field Method for Ship Path Planning Based on Artificial Potential Field—Mined Customary Navigation Routes. J. Mar. Sci. Eng. 2024, 12, 731. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, P.; Liu, Y.; Wei, Y.; Yin, Y. A Novel Route-Plan-Guided Artificial Potential Field Method for Ship Collision Avoidance: Modeling, Integration and Test. Ocean Eng. 2023, 288, 116088. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained Model Predictive Control: Stability and Optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Lee, E.B.; Markus, L. Foundations of optimal control theory. J. R. Stat. Soc. Ser. A Gen. 1969, 132, 110. [Google Scholar] [CrossRef]
- Richalet, J.; Rault, A.; Testud, J.L.; Papon, J. Model algorithmic control of industrial processes. IFAC Proc. Vol. 1977, 10, 103–120. [Google Scholar] [CrossRef]
- Keerthi, S.S.; Gilbert, E.G. Optimal infinite-horizon feedback laws for a general class of constrained discrete time systems: Stability and moving-horizon approximations. J. Optim. Theory Appl. 1988, 57, 265–293. [Google Scholar] [CrossRef]
- Scokaert, P.O.M.; Mayne, D.Q.; Rawlings, J.B. Suboptimal Model Predictive Control (Feasibility Implies Stability). IEEE Trans. Automat. Contr. 1999, 44, 648–654. [Google Scholar] [CrossRef]
- Parisini, T.; Zoppoli, R. A Receding-Horizon Regulator for Nonlinear Systems and a Neural Approximation. Automatica 1995, 31, 1443–1451. [Google Scholar] [CrossRef]
- Künhe, F.; Gomes, J.; Fetter, W. Mobile robot trajectory tracking using model predictive control. In Proceedings of the II IEEE Latin-American Robotics Symposium, São Luís, Brazil, September 2005; pp. 1–7. [Google Scholar]
- Tang, Y.; Chen, L.; Mou, J.; Chen, P.; Huang, Y.; Zhou, Y. Robust Model Predictive Control for Ship Collision Avoidance Under Multiple Uncertainties. IEEE Trans. Transp. Electrific. 2024, 10, 10374–10387. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Shan, Q.; Sun, Y. Collision Avoidance for Maritime Autonomous Surface Ships Based on Model Predictive Control Using Intention Data and Quaternion Ship Domain. J. Mar. Sci. Eng. 2025, 13, 124. [Google Scholar] [CrossRef]
- He, Y.; Zou, L.; Wu, Z.-X.; Liu, S.-Y.; Chen, W.-M.; Zou, Z.-J.; Celik, C. Integrated Path Following and Collision Avoidance Control for an Underactuated Ship Based on MFAPC. Ocean Eng. 2025, 324, 120706. [Google Scholar] [CrossRef]
- He, H.; Villagómez Rosales, J.; Van Zwijnsvoorde, T.; Lataire, E.; Delefortrie, G. Experimental Assessment of Speed Adaptive Track Control of Rudder-Propeller-Actuated Ships Based on Model Predictive Control. Ocean Eng. 2025, 326, 120824. [Google Scholar] [CrossRef]
- Ohn, S.-W.; Namgung, H. Requirements for Optimal Local Route Planning of Autonomous Ships. J. Mar. Sci. Eng. 2023, 11, 17. [Google Scholar] [CrossRef]
- Namgung, H.; Kim, J.-S. Collision Risk Inference System for Maritime Autonomous Surface Ships Using COLREGs Rules Compliant Collision Avoidance. IEEE Access 2021, 9, 7823–7835. [Google Scholar] [CrossRef]
- Mou, J.M.; Tak, C.V.D.; Ligteringen, H. Study on Collision Avoidance in Busy Waterways by Using AIS Data. Ocean Eng. 2010, 37, 483–490. [Google Scholar] [CrossRef]
- Ma, J.; Li, W.; Jia, C.; Zhang, C.; Zhang, Y. Risk Prediction for Ship Encounter Situation Awareness Using Long Short-Term Memory Based Deep Learning on Intership Behaviors. J. Adv. Transp. 2020, 2020, 8897700. [Google Scholar] [CrossRef]
- Zhang, W.; Goerlandt, F.; Kujala, P.; Wang, Y. An Advanced Method for Detecting Possible near Miss Ship Collisions from AIS Data. Ocean Eng. 2016, 124, 141–156. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, J.; Zhang, D.; Yuan, X.; Soares, C.G. Collision Risk Analysis on Ferry Ships in Jiangsu Section of the Yangtze River Based on AIS Data. Reliab. Eng. Syst. Saf. 2021, 215, 107901. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, X. A Novel Index for Real-Time Ship Collision Risk Assessment Based on Velocity Obstacle Considering Dimension Data from AIS. Ocean Eng. 2021, 240, 109913. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Ship Collision Avoidance Behaviour Recognition and Analysis Based on AIS Data. Ocean Eng. 2022, 245, 110479. [Google Scholar] [CrossRef]
- Feng, H.; Grifoll, M.; Yang, Z.; Zheng, P. Collision Risk Assessment for Ships’ Routeing Waters: An Information Entropy Approach with Automatic Identification System (AIS) Data. Ocean Coast. Manag. 2022, 224, 106184. [Google Scholar] [CrossRef]
- Korupoju, A.K.; Kapadia, V.; Vilwathilakam, A.S.; Samanta, A. Ship Collision Risk Evaluation Using AIS and Weather Data through Fuzzy Logic and Deep Learning. Ocean Eng. 2025, 318, 120116. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, W.; Yan, H.; Fei, M.; Wang, Y. A Two-Stage Dynamic Collision Avoidance Algorithm for Unmanned Surface Vehicles Based on Field Theory and COLREGs. Ocean Eng. 2022, 259, 111836. [Google Scholar] [CrossRef]
- Lou, M.; Yang, X.; Hu, J.; Shen, H.; Xu, B.; Xiang, Z.; Zhang, B. Design and Field Test of Collision Avoidance Method With Prediction for USVs: A Deep Deterministic Policy Gradient Approach. IEEE Internet Things J. 2025, 12, 3363–3372. [Google Scholar] [CrossRef]
- Guan, W.; Wang, K. Autonomous Collision Avoidance of Unmanned Surface Vehicles Based on Improved A-Star and Dynamic Window Approach Algorithms. IEEE Intell. Transp. Syst. Mag. 2023, 15, 36–50. [Google Scholar] [CrossRef]
- Xu, X.; Wu, B.; Xie, L.; Teixeira, Â.P.; Yan, X. A Novel Ship Speed and Heading Estimation Approach Using Radar Sequential Images. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11107–11120. [Google Scholar] [CrossRef]
- IMO. Interim Guidelines for MASS Trials. 2019. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx (accessed on 8 May 2025).
- Jiang, C.X.; Zhang, X.Y.; Zheng, K.J.; Guo, W.Q.; Tang, F.Y. Generalization generation of ship overtaking scenarios for autonomous collision avoidance testing. Chin. J. Ship Res. 2025, 20, 1–11. [Google Scholar] [CrossRef]
- Chen, L.J.; Wang, K.; Huang, L.W.; Li, S.W.; Zhou, X.W.; Liu, Y.Z. Research progress on test scenario of ship autonomous navigation. Chin. J. Ship Res. 2025, 20, 25–37. [Google Scholar]
- Zhu, F.; Zhou, Z.; Lu, H. Randomly Testing an Autonomous Collision Avoidance System with Real-World Ship Encounter Scenario from AIS Data. J. Mar. Sci. Eng. 2022, 10, 1588. [Google Scholar] [CrossRef]
- Wang, W.; Liu, K.; Huang, L.; Xin, X.; Wu, X.; Yuan, Z. Generation and Complexity Analysis of Ship Encounter Scenarios Using AIS Data for Collision Avoidance Algorithm Testing. Ocean Eng. 2024, 312, 119034. [Google Scholar] [CrossRef]
- Porres, I.; Azimi, S.; Lilius, J. Scenario-Based Testing of a Ship Collision Avoidance System. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 26–28 August 2020; pp. 545–552. [Google Scholar] [CrossRef]
- Bolbot, V.; Gkerekos, C.; Theotokatos, G.; Boulougouris, E. Automatic Traffic Scenarios Generation for Autonomous Ships Collision Avoidance System Testing. Ocean Eng. 2022, 254, 111309. [Google Scholar] [CrossRef]
- Zaccone, R. COLREG-Compliant Optimal Path Planning for Real-Time Guidance and Control of Autonomous Ships. J. Mar. Sci. Eng. 2021, 9, 405. [Google Scholar] [CrossRef]
- Zheng, M.; Ding, S.G.; Lan, J.F.; Chu, X. Study on scenario modeling method for collision avoidance test in inland waterway. Chin. J. Ship Res. 2023, 18, 121–132. [Google Scholar]
- Kang, Y.-T.; Chen, W.-J.; Zhu, D.-Q.; Wang, J.-H.; Xie, Q.-M. Collision avoidance path planning for ships by particle swarm optimization. J. Mar. Sci. Technol. 2018, 26, 3. [Google Scholar] [CrossRef]
- Chen, L.; Wang, K.; Liu, K.; Zhou, Y.; Hao, G.; Wang, Y.; Li, S. Combinatorial-Testing-Based Multi-Ship Encounter Scenario Generation for Collision Avoidance Algorithm Evaluation. J. Mar. Sci. Eng. 2025, 13, 338. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, K.; Majima, T. Automatic Ship Collision Avoidance Using Deep Reinforcement Learning with LSTM in Continuous Action Spaces. J. Mar. Sci. Technol. 2021, 26, 509–524. [Google Scholar] [CrossRef]
- Zhou, Z.; Bao, T.; Ding, J.; Chen, Y.; Jiang, Z.; Zhang, B. An Offline Reinforcement Learning Approach for Path Following of an Unmanned Surface Vehicle. J. Mar. Sci. Eng. 2024, 12, 2173. [Google Scholar] [CrossRef]
- Zhu, F.; Niu, Y.; Wei, M.; Du, Y.; Zhai, P. A High-Risk Test Scenario Adaptive Generation Algorithm for Ship Autonomous Collision Avoidance Decision-Making Based on Reinforcement Learning. Ocean Eng. 2025, 320, 120344. [Google Scholar] [CrossRef]
- Imazu, H. Research on Collision Avoidance Manoeuvre. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 1987. [Google Scholar]
- Pedersen, T.A.; Glomsrud, J.A.; Ruud, E.-L.; Simonsen, A.; Sandrib, J.; Eriksen, B.-O.H. Towards Simulation-Based Verification of Autonomous Navigation Systems. Saf. Sci. 2020, 129, 104799. [Google Scholar] [CrossRef]
- Teitgen, R.; Monsuez, B.; Kukla, R.; Pasquier, R.; Foinet, G. Dynamic Trajectory Planning for Ships in Dense Environment Using Collision Grid with Deep Reinforcement Learning. Ocean Eng. 2023, 281, 114807. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, M.; Chu, X.; Liu, C.; Zhong, C. Scenario Modeling Method for Collision Avoidance Testing in Inland Waterway. Ocean Eng. 2024, 298, 117192. [Google Scholar] [CrossRef]
- Han, J.; Cho, Y.; Kim, J.; Kim, J.; Son, N.; Kim, S.Y. Autonomous Collision Detection and Avoidance for ARAGON USV: Development and Field Tests. J. Field Robot. 2020, 37, 987–1002. [Google Scholar] [CrossRef]
- Pietrzykowski, Z.; Wołejsza, P.; Nozdrzykowski, Ł.; Borkowski, P.; Banaś, P.; Magaj, J.; Chomski, J.; Mąka, M.; Mielniczuk, S.; Pańka, A.; et al. The Autonomous Navigation System of a Sea-Going Vessel. Ocean Eng. 2022, 261, 112104. [Google Scholar] [CrossRef]
- Negenborn, R.R.; Goerlandt, F.; Johansen, T.A.; Slaets, P.; Valdez Banda, O.A.; Vanelslander, T.; Ventikos, N.P. Autonomous Ships Are on the Horizon: Here’s What We Need to Know. Nature 2023, 615, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Jiang, L.; An, L.; Yang, R. Collision-Avoidance Navigation Systems for Maritime Autonomous Surface Ships: A State of the Art Survey. Ocean Eng. 2021, 235, 109380. [Google Scholar] [CrossRef]
- Dong, B.; Bautista, L.; Zhu, L. Navigating Uncharted Waters: Challenges and Regulatory Solutions for Flag State Jurisdiction of Maritime Autonomous Surface Ships under UNCLOS. Mar. Policy 2024, 161, 106039. [Google Scholar] [CrossRef]
- Xu, K.W.; Zhang, H.H.; Yan, K.; Zhu, Y.Z.; Liu, J.R. The Development Status and Trend of the Autonomous Ship Test Area. Ship Sci. Technol. 2020, 42, 1–6. [Google Scholar]
- Wang, S.J. Norwegian Smart Ship Project SFI-AutoShip. China Ship Surv. 2025, 63–67. [Google Scholar]
- Wang, S.J. Japan intelligent ship development roadmap. China Ship Surv. 2024, 50–53. [Google Scholar]
- Zhang, A.T.; Guo, Y.; Bao, J.W.; Liu, X.; Yang, Y.F.; Yin, W.H. Research on Virtual and Real Integration Simulation Test Technology of Ship Intelligence System. Shipbuild. China 2025, 66, 146–156. [Google Scholar]
- Yang, F.; Liu, J.L.; Yu, C.; Sun, X. Test Technology for Intelligent Navigation with Mix of Virtual and Actual Reality. Navig. China 2022, 45, 113–122. [Google Scholar]
- Zhou, H.; Zheng, M.; Chu, X.; Yu, C.; Lei, J.; Lin, B.; Zhang, K.; Hua, W. Virtual Reality Fusion Testing-Based Autonomous Collision Avoidance of Ships in Open Water: Methods and Practices. J. Mar. Sci. Eng. 2024, 12, 2181. [Google Scholar] [CrossRef]
- Dai, Y.; He, Y.; Zhao, X.; Xu, K. Testing Method of Autonomous Navigation Systems for Ships Based on Virtual-Reality Integration Scenarios. Ocean Eng. 2024, 309, 118597. [Google Scholar] [CrossRef]
- Woerner, K. Multi-Contact Protocol-Constrained Collision Avoidance for Autonomous Marine Vehicles. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. [Google Scholar]
- Nakamura, S.; Okada, N. Development of Automatic Collision Avoidance System and Quantitative Evaluation of the Manoeuvring Results. TransNav 2019, 13, 133–141. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, K.; Minami, M. Framework of Safety Evaluation and Scenarios for Automatic Collision Avoidance Algorithm. Ocean Eng. 2024, 300, 117506. [Google Scholar] [CrossRef]
Algorithm | DCPA/TCPA Performance | Computational Cost | Success Rates in Maritime Traffic |
---|---|---|---|
Dynamic Window Approach (DWA) | Medium (DWA has trajectory prediction errors affecting DCPA/TCPA accuracy, though improvements with 6-DOF equations can enhance it) | High (Samples velocity commands and constructs paths, but new non-discrete path representation aims to reduce this) | Medium (Prone to convergence and local optimality issues in complex scenarios, despite improved versions) |
Velocity Obstacle Algorithm (VO) | Medium (Can calculate DCPA/TCPA from COLREGS-based geometric constraints, yet may not cover all COLREGs scenarios accurately) | High (Complexity spikes in multi-vessel and dynamic-obstacle–rich scenarios) | Low (In real-world, complex marine conditions, prediction inaccuracies can cause jitter or failure in collision-avoidance paths) |
Artificial Potential Field Algorithm (APF) | Low (Prone to local minima, which can lead to sub-optimal paths and affect DCPA/TCPA) | Low (Fast-executing with low computational complexity) | Low (Local minima in certain obstacles and multi-vessel coordination issues reduce success rate) |
Model Predictive Control (MPC) | High (Explicitly handles COLREGs and other constraints, optimizing for effective DCPA/TCPA control) | Medium (Solves an open-loop optimal control problem online, but efficiency can be optimized compared to some algorithms) | High (Shows good performance in simulations, though practical challenges remain) |
Category | Algorithms | Principle | Scenario | Adaptability | Efficiency |
---|---|---|---|---|---|
Regulation-driven | Geometric Model | geometric relationship analysis of COLREGs provisions and ship domain | single target vessel in open waters | Low | Strong |
Expert System and Fuzzy Logic | combining expert experience and fuzzy rule base | Simple encounter scenarios | Low | Medium | |
Physical model-driven | Dynamic Window Approach (DWA) | Optimizes feasible velocity window based on current motion state to achieve dynamic obstacle avoidance | Local dynamic obstacle avoidance | Strong | Strong |
Velocity Obstacle (VO) | Calculates velocity obstacle areas and selects collision-free velocities | dense port waterways | Strong | Medium | |
Artificial Potential Field (APF) | Drives ships toward targets and away from obstacles using virtual potential fields | Simple dynamic collision avoidance | Low | Strong | |
Model Predictive Control (MPC) | Implements rolling optimization of multivariable control, combining COLREGs constraints and environmental prediction | multi-vessel collaboration | Strong | Low | |
Data-driven | Maritime Data-Driven Approach | Generates collision avoidance strategies based on collision risk analysis of AIS, Radar and video data | Risk warning in open waters | Low | Strong |
Artificial Neural Network | Captures vessel behavior patterns using time-series data models and generates end-to-end collision avoidance decisions | Dynamic multi-ship collaboration | Strong | Low | |
Deep Reinforcement Learning (DRL) | Trains agents through reward functions (including COLREGs constraints) to achieve collision avoidance decisions in high-dimensional spaces | High-risk complex scenarios | Strong | Low | |
Hybrid methods | Knowledge Graph + DWA | Fuses knowledge graph (encoded with COLREGs) and DWA to enhance situational awareness and regulation compliance | Multi-ship encounter and dynamic obstacle scenarios | Strong | Medium |
DQN + VO | Combines DRL and VO algorithm to prioritize high-risk target vessels | Highly dynamic multi-ship environments | Strong | Medium | |
PSO + APF | Optimizes global paths via particle swarm optimization and achieves local obstacle avoidance with APF | Path planning in complex static environments | Strong | Strong | |
Multi-Agent Deep Reinforcement Learning | Enables multi-ship collaborative collision avoidance by designing joint reward mechanisms compliant with COLREGs | Multi-ship collaboration in narrow waters | Strong | Medium |
Scenario Generation Method | Principle | Scenario Authenticity | Regulation Coverage | Scenario Generation Capability | Environmental Coupling | Application Stage |
---|---|---|---|---|---|---|
Real Data-Driven Testing Scenario Extraction | Based on real navigation data | High | Limited | Weak | Low | Initial verification |
Mechanism Modeling-Based Testing Scenario Reconstruction | COLREGs provisions, ship kinematic models | Moderate | Medium | Medium | Low | Regulation compliance verification |
Machine Learning-Based Testing Scenario Derivation | DRL algorithms virtual simulation environment | Variable | Partial | Strong | Medium | High-risk scenario stress testing |
Test Experimental Method | Test Environment Fidelity | Scenario Coverage Capability | Cost and Risk | Regulation Compliance Verification | Application Stage |
---|---|---|---|---|---|
Virtual Simulation | Medium | Strong | Low | High | Initial algorithm verification |
Physical Model Testing | Medium | Limited | Medium | Medium | Mid-term physical performance verification |
Full-scale vessel testing | High | Weak | High | High | Final engineering verification |
Virtual–Real Fusion testing | High | Strong | Medium | High | Full cycle, transitional verification from algorithm optimization to ship deployment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Wang, Z.; Zhu, Y.; Zhang, T.; Shi, G.; Shi, Y. A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels. J. Mar. Sci. Eng. 2025, 13, 1570. https://doi.org/10.3390/jmse13081570
Cao X, Wang Z, Zhu Y, Zhang T, Shi G, Shi Y. A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels. Journal of Marine Science and Engineering. 2025; 13(8):1570. https://doi.org/10.3390/jmse13081570
Chicago/Turabian StyleCao, Xingfei, Zhiming Wang, Yahong Zhu, Ting Zhang, Guoyou Shi, and Yingyu Shi. 2025. "A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels" Journal of Marine Science and Engineering 13, no. 8: 1570. https://doi.org/10.3390/jmse13081570
APA StyleCao, X., Wang, Z., Zhu, Y., Zhang, T., Shi, G., & Shi, Y. (2025). A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels. Journal of Marine Science and Engineering, 13(8), 1570. https://doi.org/10.3390/jmse13081570