Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Land Subsidence Analysis
3.1.1. Image Processing
3.1.2. Batch Execution
3.1.3. Data Correction and Track Analysis
3.1.4. Quality Control and Network Refinement
3.1.5. Velocity Assessment
3.2. Coastal Flood Analysis
3.3. Method Validation
3.4. Modeling of Impact Scenarios
4. Results
4.1. GACOS-Corrected Vertical Land Motion
4.2. Future Vertical Land Motion
4.3. Areas Susceptible to Subsidence and Coastal Floods
4.4. Land Cover Exposed to Subsidence and Coastal Floods
5. Discussion
5.1. Causal Factors of Subsidence
5.2. Worst-Case Scenarios
5.2.1. Near Term Impact Scenarios
5.2.2. Long Term Impact Scenarios
5.3. Implications for Regional Land Use Planning
5.4. Limitations of the Study and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luu, Q.H.; Tkalich, P.; Tay, T.W. Sea level trend and variability around Peninsular Malaysia. Ocean Sci. 2015, 11, 617–628. [Google Scholar] [CrossRef]
- Din, A.H.M.; Zulkifli, N.A.; Hamden, M.H.; Aris, W.A.W. Sea level trend over Malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data. Adv. Space Res. 2019, 63, 3452–3472. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Shoaib, M.; Shah, S.U.; Khan, J.; Ying, Z. Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique. Sci. Rep. 2022, 12, 5294. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar] [CrossRef]
- Anderssohn, J.; Wetzel, H.U.; Walter, T.R.; Motagh, M.; Djamour, Y.; Kaufmann, H. Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, Northeast Iran: Results from InSAR and levelling. Geophys. J. Int. 2008, 174, 287–294. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.C.; Zhang, L.N.; Zou, J.P.; Liu, G.X.; Zhang, R.; Yu, B. Deformation trend extraction based on multi-temporal InSAR in Shanghai. Remote Sens. 2013, 5, 1774–1786. [Google Scholar] [CrossRef]
- Luo, Q.L.; Perissin, D.; Lin, H.; Zhang, Y.Z.; Wang, W. Subsidence monitoring of Tianjin suburbs by TerraSAR-X persistent scatterers interferometry. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1642–1650. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Huang, H.J.; Bi, H.B. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat. Hazards 2015, 75, 2385–2397. [Google Scholar] [CrossRef]
- Nico, G.; Tomé, R.; Catalao, J.; Miranda, P.M.A. On the use of the WRF model to mitigate tropospheric phase delay effects in SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4970–4976. [Google Scholar] [CrossRef]
- Mateus, P.; Nico, G.; Catalao, J. Uncertainty assessment of the estimated atmospheric delay obtained by a numerical weather model (NMW). IEEE Trans. Geosci. Remote Sens. 2015, 53, 6710–6717. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Yang, F.; An, Y.; Ren, C.; Xu, J.; Li, J.; Li, D.; Peng, Z. Monitoring and analysis of surface deformation in alpine valley areas based on multidimensional InSAR technology. Sci. Rep. 2023, 13, 12896. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.J.; Qu, C.Y.; Guo, L.M.; Zhang, G.H.; Song, X.G.; Jiang, Y.; Zhang, G.F.; Wen, S.Y.; Wang, C.S.; Xu, X.B.; et al. The vertical coseismic deformation field of the Wenchuan earthquake based on the combination of GPS and InSAR. In Proceedings of the FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy, 23–27 March 2015; ESA Publication SP-731. European Space Agency (ESA): Paris, France, 2015; p. 281. [Google Scholar] [CrossRef]
- Wempen, J.M. Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. Int. J. Min. Sci. Technol. 2020, 30, 33–37. [Google Scholar] [CrossRef]
- Ullmann, T.; Büdel, C.; Baumhauer, R.; Padashi, M. Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection. Int. J. Earth Sci. Geophys. 2016, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Cigna, F.; Esquivel Ramírez, R.; Tapete, D. Accuracy of Sentinel-1PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Monserrat, O.; Barra, A.; Reyes, C.; Tomas, R.; Navarro, J.; Galve, J.P.; Solari, L.; Sarro, R.; Azañon, J.M.; Luque, J.A.; et al. ADATools for Persistent Scatterer Interferometry based displacement maps analysis: An example in Granada Province (Spain). In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Ilia, I.; Karalis, K.; Tsangaratos, P.; Zhao, X.; Chen, W. Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal. Water 2023, 15, 1094. [Google Scholar] [CrossRef]
- Dura, T.; Chilton, W.; Small, D.; Garner, A.J.; Hawkes, A.; Melgar, D.; Engelhart, S.E.; Staisch, L.M.; Witter, R.C.; Nelson, A.R.; et al. Increased flood exposure in the Pacific Northwest following earthquake-driven subsidence and sea-level rise. Proc. Natl. Acad. Sci. USA 2025, 122, e2424659122. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, L.; Li, X.; Gong, H.; Du, D.; Wang, H.; Teatini, P. Land Subsidence Evolution and Simulation in the Western Coastal Area of Bohai Bay, China. J. Mar. Sci. Eng. 2022, 10, 1549. [Google Scholar] [CrossRef]
- Papoutsis, I.; Kontoes, C.; Alatza, S.; Apostolakis, A.; Loupasakis, C. InSAR Greece with Parallelized Persistent Scatterer Interferometry: A National Ground Motion Service for Big Copernicus Sentinel-1 Data. Remote Sens. 2020, 12, 3207. [Google Scholar] [CrossRef]
- Thomas, A. Mapping of Surface Deformation Associated with the 5.2 Magnitude Stilfontein Earthquake of 3 April 2017 Using Sentinel-1 Data. Arab. J. Geosci. 2019, 12, 1784. [Google Scholar]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geodesy Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Festa, D.; Novellino, A.; Hussain, E.; Bateson, L.; Casagli, N.; Confuorto, P.; Del Soldato, M.; Raspini, F. Unsupervised detection of InSAR time series patterns based on PCA and K-means clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103276. [Google Scholar] [CrossRef]
- Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophys. J. Int. 2016, 205, 536–547. [Google Scholar] [CrossRef]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Gao, G.; San, L.H.; Zhu, Y. Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water 2021, 13, 1518. [Google Scholar] [CrossRef]
- European Environment Agency. Integrated Coastal Zone Management-European Environment Agency. 2000. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/integrated-coastal-zone-management (accessed on 10 July 2025).
- Bagheri, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Li, P.; Wang, G.; Liang, C.; Wang, H.; Li, Z. InSAR-Derived Coastal Subsidence Reveals New Inundation Scenarios Over the Yellow River Delta. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 8431–8441. [Google Scholar] [CrossRef]
- Department of Statistics Malaysia. Key Findings: Population and Housing Census of Malaysia 2020; Department of Statistics Malaysia: Putrajaya, Malaysia, 2020.
- Daud, S.; Milow, P.; Zakaria, R.M. Analysis of Shoreline Change Trends and Adaptation of Selangor Coastline, Using Landsat Satellite Data. J. Indian Soc. Remote Sens. 2021, 49, 1869–1878. [Google Scholar] [CrossRef]
- Marshall, C.; Large, D.J.; Athab, A.; Evers, S.L.; Sowter, A.; Marsh, S.; Sjögersten, S. Monitoring tropical peat related settlement using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol. 2018, 244, 57–65. [Google Scholar] [CrossRef]
- Julzarika, A. Land Subsidence Dynamics in Malaysia Based on Time-Series Vertical Deformation Using Modified D-InSAR Sentinel-1. Plan. Malays. J. 2023, 21, 325–340. [Google Scholar] [CrossRef]
- Lembaga Urus Air Selangor (LUAS). Integrated Coastal Management (ICM) and Integrated Coastal Use Zoning Plan (ICUZP) Negeri Selangor 2022–2023. 2023. Available online: https://www.luas.gov.my/ (accessed on 6 May 2025).
- Bhd, R.C.S. Review of National Water Resources (2000–2050) and Formulation of National Water Resources Policy: Final Report: August 2011; Kementerian Sumber Asli Dan Alam Sekitar Malaysia: Kuala Lumpur, Malaysia, 2011; Volume 3.
- Mridha, G.C.; Hossain, M.M.; Uddin, M.S.; Masud, M.S. Study on availability of groundwater resources in Selangor state of Malaysia for an efficient planning and management of water resources. J. Water Clim. Change 2020, 11, 1050–1066. [Google Scholar] [CrossRef]
- Simons, W.; Naeije, M.; Ghazali, Z.; Rahman, W.D.; Cob, S.; Kadir, M.; Mustafar, A.; Din, A.H.; Efendi, J.; Noppradit, P. Relative sea level trends for the coastal areas of Peninsular and East Malaysia based on remote and in situ observations. Remote Sens. 2023, 15, 1113. [Google Scholar] [CrossRef]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN Simulation for Selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- de la Barreda-Bautista, B.; Ledger, M.J.; Sjögersten, S.; Gee, D.; Sowter, A.; Cole, B.; Page, S.E.; Large, D.J.; Evans, C.D.; Tansey, K.J. Exploring Spatial Patterns of Tropical Peatland Subsidence in Selangor, Malaysia Using the APSIS-DInSAR Technique. Remote Sens. 2024, 16, 2249. [Google Scholar] [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
- Bateson, L.; Novellino, A.; Hussain, E.; Arnhardt, R.; Nguyen, H.K. Urban development induced subsidence in deltaic environments: A case study in Hanoi, Vietnam. Int. J. Appl. Earth Observ. Geoinf. 2023, 125, 103585. [Google Scholar] [CrossRef]
- Zhao, Y.; Zuo, X.; Li, Y.; Guo, S.; Bu, J.; Yang, Q. Evaluation of InSAR Tropospheric Delay Correction Methods in a Low-Latitude Alpine Canyon Region. Remote Sens. 2023, 15, 990. [Google Scholar] [CrossRef]
- Haghshenas Haghighi, M.; Motagh, M. Treating Tropospheric Phase Delay in Large-scale Sentinel-1 Stacks to Analyze Land Subsidence. PFG 2024, 92, 593–607. [Google Scholar] [CrossRef]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Yen, J.-Y.; Chuang, R.Y. Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas. Remote Sens. 2018, 10, 1318. [Google Scholar] [CrossRef]
- Teixeira, A.C.; Bakon, M.; Perissin, D.; Sousa, J.J. InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sens. 2024, 16, 3806. [Google Scholar] [CrossRef]
- Tao, Q.; Ding, L.; Hu, L.; Chen, Y.; Liu, T. The performance of LS and SVD methods for SBAS InSAR deformation model solutions. Int. J. Remote Sens. 2020, 41, 8547–8572. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, G.; Huang, G.; Cheng, C.; Zhang, Z.; Zhang, C. SSBAS-InSAR: A Spatially Constrained Small Baseline Subset InSAR Technique for Refined Time-Series Deformation Monitoring. Remote Sens. 2024, 16, 3515. [Google Scholar] [CrossRef]
- Ziwen, Z.; Liu, Y.; Li, F. Land subsidence monitoring based on InSAR and inversion of aquifer parameters. J. Wirel. Commun. Netw. 2019, 2019, 291. [Google Scholar] [CrossRef]
- Du, Q.; Chen, D.; Li, G.; Cao, Y.; Zhou, Y.; Chai, M.; Wang, F.; Qi, S.; Wu, G.; Gao, K. Preliminary Study on InSAR-Based Uplift or Subsidence Monitoring and Stability Evaluation of Ground Surface in the Permafrost Zone of the Qinghai–Tibet Engineering Corridor, China. Remote Sens. 2023, 15, 3728. [Google Scholar] [CrossRef]
- Gemitzi, A.; Kopsidas, O.; Stefani, F.; Polymeros, A.; Bellos, V. A Constantly Updated Flood Hazard Assessment Tool Using Satellite-Based High-Resolution Land Cover Dataset Within Google Earth Engine. Land 2024, 13, 1929. [Google Scholar] [CrossRef]
- Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Zhran, M.; Ghanem, K.; Tariq, A. Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: A case study of the Damietta branch. Environ. Sci. Eur. 2024, 36, 184. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Q.; Yu, D.; Lin, N.; Kubanek, J.; Ma, G.; Liu, M.; Pepe, A. Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. J. Hydrol. 2019, 571, 593–604. [Google Scholar] [CrossRef]
- Navarro-Hernández, M.I.; Valdes-Abellan, J.; Tomás, R. Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling. Water Resour. Manag. 2023, 37, 4363–4383. [Google Scholar] [CrossRef]
- Vernaccini, M.; Poljansek, L. INFORM Index for Risk Management: Concept and Methodology Version 2017; Publications Office of the European Union: Luxembourg, 2017; Available online: https://drmkc.jrc.ec.europa.eu/inform-index/Portals/0/InfoRM/INFORM%20Concept%20and%20Methodology%20Version%202017%20Pdf%20FINAL.pdf (accessed on 11 July 2025).
- Affandi, E.; Ng, T.F.; Pereira, J.J.; Ahmad, F.; Banks, V.J. Revalidation Technique on Landslide Susceptibility Modelling: An Approach to Local Level Disaster Risk Management in Kuala Lumpur, Malaysia. Appl. Sci. 2023, 13, 768. [Google Scholar] [CrossRef]
- Raihan, A.; Pereira, J.J.; Begum, R.A.; Rasiah, R. The economic impact of water supply disruption from the Selangor River, Malaysia. Blue-Green Syst. 2023, 5, 102–120. [Google Scholar] [CrossRef]
- Yahaya, N.S.; Pereira, J.J.; Taha, M.R. Role of Local Level Stakeholders in Adapting to Emerging Natech Risks Due to Climate Change in the Selangor River Basin, Malaysia. 2024; preprint. [Google Scholar] [CrossRef]
- Yahaya, N.S.; Pereira, J.J.; Taha, M.R.; Yaacob, W.Z.W. Delineating potential sites for Natech due to climate change in the Selangor River Basin, Malaysia. Environ. Res. Commun. 2025, 7, 015006. [Google Scholar] [CrossRef]
- Russian, O.; Dawood, M.; Schuman, P.; Kelly, D. Case Study on the Collapse Potential of a Wharf Supported by Severely Deteriorated Steel Piles under Gravitational Loads. J. Perform. Constr. Facil. 2018, 32, 4018075. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Cui, Z.-D.; Wang, J.-X.; Lu, C.; Yan, X.-X. Model test study of land subsidence caused by high-rise building group in Shanghai. Bull. Eng. Geol. Environ. 2008, 67, 173–179. [Google Scholar] [CrossRef]
- Srivastava, A.; Goyal, C.; Jain, A. Review of Causes of Foundation Failures and Their Possible Preventive and Remedial Measures. In Proceedings of the 4th KKU–International Engineering Conference, (KKU-IENC2012), Khon Kaen, Thailand, 10–11 May 2012. [Google Scholar]
- Shen, Y.; Yin, J.; Zhu, D.-S.; Kumah, D.; Guo, W.; Hudu, A.A. Performance of a deep foundation pit supported by suspended piles in soil and rock strata: A case study. Arab. J. Geosci. 2021, 14, 2211. [Google Scholar] [CrossRef]
- Burbidge, M.C.; Burland, J.; Wilson, E.J. Settlement of foundations on sand and gravel. Ice Proc. 1985, 78, 1325–1381. [Google Scholar]
- Melville, B.W.; Coleman, N.L. Bridge Scour; FDOT Office Central Office: Tallahassee, FL, USA, 2000.
- Ahmed, M.F.; Halder, B.; Juneng, L.; Farooque, A.A.; Yaseen, Z.M. Remote sensing-based shoreline change investigation in Klang Coast and Langkawi Island towards sustainable coastal management. Geomat. Nat. Hazards Risk 2025, 16, 2493226. [Google Scholar] [CrossRef]
- Pfeffer, J.; Allemand, P. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet. Sci. Lett. 2016, 439, 39–47. [Google Scholar] [CrossRef]
- Varrani, A.; Nones, M. Vulnerability, impacts and assessment of climate change on Jakarta and Venice. Int. J. River Basin Manag. 2017, 16, 439–447. [Google Scholar] [CrossRef]
- Harari, G.; Herbst, S. Confidence interval calculation for small numbers of observations or no observations at all. Harefuah 2014, 153, 289–291, 304, 303. [Google Scholar] [PubMed]
- Kulp, S.; Strauss, B.H. Global DEM Errors Underpredict Coastal Vulnerability to Sea Level Rise and Flooding. Front. Earth Sci. 2016, 4, 36. [Google Scholar] [CrossRef]
- Gesch, D.B. Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Front. Earth Sci. 2018, 6, 230. [Google Scholar] [CrossRef]
- Hooijer, A.; Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 2021, 12, 3592. [Google Scholar] [CrossRef] [PubMed]
- Dusseau, D.; Zobel, Z.; Schwalm, C.R. DiluviumDEM: Enhanced accuracy in global coastal digital elevation models. Remote Sens. Environ. 2023, 298, 113812. [Google Scholar] [CrossRef]
InSAR Information | |
---|---|
Parameters | Ascending/Descending Track |
Satellite | Sentinel-1 |
Sensor | Synthetic Aperture Radar (SAR) |
Acquisition Mode | Interferometric Wide Swath (IWS) |
Spatial Resolution | Approximately 10 m (range) × 10 m (azimuth) |
Temporal Resolution | typically, around 6–12 days |
Time Span | January 2015 to December 2022 |
Processed scenes | A total of 215 epochs, with a selected 182 usable scenes, and 589 discarded due to poor quality. |
Key Image Parameters |
|
Preprocessing Filters |
|
Quality Control Steps | Validation against external datasets such as field evidence and subsidence events |
Variables | Hazard Score | AHP Weight Selection | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Distance from coastline | >1000 m | 500–1000 m | 0–500 m | 28.1% |
Elevation above sea level | >5 m | 1–5 m | 0–1 m | 20.8% |
Topographic position index (TPI) | 2 to 5 | 0 to 2 | −2 to 0 | 23.4% |
Normalized difference vegetation index (NDVI) | 0.7 to 1 | 0.3 to 0.7 | 0 to 0.3 | 13.0% |
Normalized difference water index (NDWI) | −0.2 to 0.3 | 0.3 to 0.7 | 0.7 to 1 | 14.7% |
Attribute | Details | |
---|---|---|
Data Source | Field Measurement | Reported Events |
Number of Events | Subsidence (6) | Coastal flooding (48), Coastal Inundation (22), Coastal Erosion (4), and subsidence (3) (see Table S1 for locations) |
Location of Events | Within ICZM | Within ICZM |
Time of Events | Prior to August 2023 | 1990–2025 |
PROJECTIONS | |||
---|---|---|---|
Year | Local Subsidence (m) | Relative SLR (m) from the IPCC | Net Vertical Motion (m) |
2040 | 0.226 | 0.15–0.25 (SSP1-2.6) | 0.376 ± 0.006976–0.476 ± 0.006976 |
0.25–0.35 (SSP5-8.5) | 0.476 ± 0.006976–0.576 ± 0.006976 | ||
2050 | 0.359 | 0.20–0.35 (SSP1-2.6) | 0.559 ± 0.006976–0.709 ± 0.006976 |
0.30–0.45 (SSP5-8.5) | 0.659 ± 0.006976–0.809 ± 0.006976 | ||
2100 | 1.024 | 0.45–0.60 (SSP1-2.6) | 1.474 ± 0.006976–1.624 ± 0.006976 |
0.85–1.10 (SSP5-8.5) | 1.874 ± 0.006976–2.124 ± 0.006976 |
District | Average Subsidence Rate (mm/year) | Maximum Subsidence Rate (mm/year) | Standard Deviation (mm/year) | Number of Observations/Events |
---|---|---|---|---|
Sepang | −13.9 | −46.2 | 15.6 | 4 |
Kuala Langat | −33.5 | −83.6 | 27.1 | 4 |
Klang | −8.2 | −22.2 | 6.3 | 5 |
Kuala Selangor | 2.4 | −19.2 | 5.0 | 1 |
Land Subsidence | Land Cover (km2) | |||
---|---|---|---|---|
Levels of Susceptibility | Forestland | Cropland | Built-up | Total |
Low | 113.81 | 11.38 | 12.19 | 137.38 |
Medium | 448.18 | 140.90 | 250.64 | 839.72 |
High | 30.08 | 3.52 | 38.48 | 72.08 |
Total | 592.07 | 155.80 | 301.31 | 1049.18 |
Coastal Flood | Land Cover (km2) | |||
Levels of Susceptibility | Forestland | Cropland | Built-up | Total |
Low | 445.86 | 70.56 | 65.07 | 581.49 |
Medium | 182.16 | 75.24 | 150.03 | 407.43 |
High | 85.14 | 19.89 | 110.25 | 215.28 |
Total | 713.16 | 165.69 | 325.35 | 1204.20 |
Land Subsidence and Floods | Land Cover (km2) | |||
Levels of Susceptibility | Forestland | Cropland | Built-up | Total |
Low | 485.82 | 76.41 | 76.77 | 639.00 |
Medium | 507.69 | 152.91 | 286.29 | 946.89 |
High | 112.86 | 22.68 | 134.82 | 270.36 |
Total | 1106.37 | 252.00 | 497.88 | 1856.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batmanathan, N.M.; Pereira, J.J.; Shah, A.A.; Muhamad, N.; Sian, L.C. Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia. J. Mar. Sci. Eng. 2025, 13, 1539. https://doi.org/10.3390/jmse13081539
Batmanathan NM, Pereira JJ, Shah AA, Muhamad N, Sian LC. Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia. Journal of Marine Science and Engineering. 2025; 13(8):1539. https://doi.org/10.3390/jmse13081539
Chicago/Turabian StyleBatmanathan, Navakanesh M., Joy Jacqueline Pereira, Afroz Ahmad Shah, Nurfashareena Muhamad, and Lim Choun Sian. 2025. "Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia" Journal of Marine Science and Engineering 13, no. 8: 1539. https://doi.org/10.3390/jmse13081539
APA StyleBatmanathan, N. M., Pereira, J. J., Shah, A. A., Muhamad, N., & Sian, L. C. (2025). Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia. Journal of Marine Science and Engineering, 13(8), 1539. https://doi.org/10.3390/jmse13081539