Numerical and Experimental Investigation of a Ducky Wave Energy Converter and Its Impact on Floating Ocean Wind Turbines
Abstract
1. Introduction
1.1. Background
1.2. Research Advances and Analyses
1.3. Research Content and Contributions
2. Numerical Model
2.1. Frequency Domain Hydrodynamic Model
2.2. Time-Domain Coupled Response Model
3. Frequency Domain Results
3.1. Frequency Domain Characteristics
3.2. Methods for Evaluating Conversion Efficiency
3.3. Effect of Axial Depth in Frequency Domain
3.4. Effect of Heel Angle in Frequency Domain
3.5. Effect of Wave Incident Angles in Frequency Domain
4. Time Domain Results
4.1. Mooring System
4.2. Numerical Validation
4.3. Mooring Force in Time Domain
4.4. Power Generation and Efficiency
4.5. Effect of Axial Depth in Time Domain
4.6. Effect of Heel Angle in Time Domain
4.7. Effect of Wave Incident Angle in Time Domain
4.8. Performance of the Device Under Irregular Waves
5. Influence of the Wave Energy Converter on Floating Wind Turbine
5.1. Parameters of the Marine Wave Environment
5.2. Simulational Model and Case Setup
5.3. Comparison of Motion Response of FOWT Before and After the Wave Energy Converter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WEC | wave energy converter |
PTO | power take-off |
RAO | response amplitude operators |
CFD | Computational Fluid Dynamics |
EFD | Experimental Fluid Dynamics |
FOWT | floating offshore wind turbines |
OWC | oscillating water column |
OWT | offshore wind turbines |
TWWC | TLP-WT-WEC- Combination |
OES | Ocean Energy Systems |
IRENA | International Renewable Energy Agency |
TWh | terawatt-hours |
CAGR | Compound Annual Growth Rate |
References
- Jia, J. Investigation in a Ocean Wave Energy Converter with a Flywheel. Master’s Thesis, The Graduate School, Stony Brook University, Stony Brook, NY, USA, 2016. [Google Scholar]
- Wilberforce, T.; El Hassan, Z.; Durrant, A.; Thompson, J.; Soudan, B.; Olabi, A.G. Overview of ocean power technology. Energy 2019, 175, 165–181. [Google Scholar] [CrossRef]
- Awotwe, T.W.; Alaswad, A.; Mooney, J.; Olabi, A. Hydrogen production for solar energy storage. A proposed design investigation. State Art Energy Dev. 2015, 11, 353. [Google Scholar]
- López, I.; Andreu, J.; Ceballos, S.; De Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Olabi, A.G. Optimisation of tray drier microalgae dewatering techniques using response surface methodology. Energies 2018, 11, 2327. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Hall, D.O. Biomass, Energy, and Environment: A Developing Country Perspective from India; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Villate, J. Situacion actual de las energías marinas y perspectivas de futuro. In Proceedings of the Seminario Anual de Automatica, Electronica e Instrumentacion, Bilbao, Spain, 7–9 July 2010; pp. 11–13. [Google Scholar]
- Deng, Y.-B.; Xiong, W. Development and utilization of ocean energy. Renew. Energy 2004, 3, 70–72. [Google Scholar]
- Fang, Z.F.; Ma, Z.H.; Fang, J.; Gao, S.; He, K.D. Research and development of multi section floating mechanical wave energy power generation device. Appl. Mech. Mater. 2014, 494–495, 711–716. [Google Scholar] [CrossRef]
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 223, 887–902. [Google Scholar] [CrossRef]
- Mork, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the global wave energy potential. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Shanghai, China, 6–11 June 2010; pp. 447–454. [Google Scholar]
- Gunn, K.; Stock-Williams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Magagna, D.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy 2015, 11, 84–104. [Google Scholar] [CrossRef]
- IRENA. Innovation Outlook: Ocean Energy Technologies; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020.
- Guo, B.; Ringwood, J.V. A review of wave energy technology from a research and commercial perspective. IET Renew. Power Gener. 2021, 15, 3065–3090. [Google Scholar] [CrossRef]
- Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Michailides, C. Hydrodynamic response and produced power of a combined structure consisting of a spar and heaving type wave energy converters. Energies 2021, 14, 225. [Google Scholar] [CrossRef]
- Gaspar, J.F.; Kamarlouei, M.; Thiebaut, F.; Guedes Soares, C. Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions. Renew. Energy 2021, 177, 871–883. [Google Scholar] [CrossRef]
- Ren, N.; Ma, Z.; Shan, B.; Ning, D.; Ou, J. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions. Renew. Energy 2020, 151, 966–974. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, D.; Shi, W.; Johanning, L.; Liang, D. Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile. Coast. Eng. 2020, 162, 103731. [Google Scholar] [CrossRef]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R.M. Renewable energy from the ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Gomes, M.d.N.; Salvador, H.; Magno, F.; Rodrigues, A.A.; dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Constructal design applied to geometric shapes analysis of wave energy converters. Defect Diffus. Forum 2021, 407, 147–160. [Google Scholar] [CrossRef]
- Salter, S.H. Wave power. Nature 1974, 249, 720–724. [Google Scholar] [CrossRef]
- Salter, S.H.; Jeffrey, D.C.; Taylor, J.R.M. First Year Interim Report on Edinburgh Wave Power Project: Study of Mechanisms for Extracting Power from Sea Waves; University of Edinburgh: Edinburgh, UK, 1975. [Google Scholar]
- Jeffrey, D.; Richmond, D.J.; Salter, S.H.; Taylor, J.R.M. Second Year Interim Report on Edinburgh Wave Power Project ‘Study of Mechanisms for Extracting Power from Sea Waves’; University of Edinburgh: Edinburgh, UK, 1976. [Google Scholar]
- Bellamy, N. Wave power experiments at Loch Ness. In Proceedings of the International Conference on Future Energy Concepts, London, UK, 30 January–1 February 1979; pp. 167–169. [Google Scholar]
- Mynett, A.E.; Serman, D.D.; Mei, C.C. Characteristics of Salter’s cam for extracting energy from ocean waves. Appl. Ocean Res. 1979, 1, 13–20. [Google Scholar] [CrossRef]
- Serman, D.D.; Mei, C.C. Note on Salter’s energy absorber in random waves. Ocean Eng. 1980, 7, 477–490. [Google Scholar] [CrossRef]
- Salter, S. Recent progress on ducks. IEE Proc. A (Phys. Sci. Meas. Instrum. Manag. Educ. Rev.) 1980, 127, 308–319. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P.; Larsen, T.; Marchalot, T. Experimental study of the Weptos wave energy converter. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012; pp. 525–534. [Google Scholar]
- Zhou, B.-Z.; Li, J.-H.; Zhang, H.-M.; Chen, L.-F.; Wang, L.; Jin, P. Wave extraction and attenuation performance of an Edinburgh Duck wave energy converter. China Ocean Eng. 2021, 35, 905–913. [Google Scholar] [CrossRef]
- Foteinis, S. Wave energy converters in low energy seas: Current state and opportunities. Renew. Sustain. Energy Rev. 2022, 162, 112448. [Google Scholar] [CrossRef]
- Si, Y.; Chen, Z.; Zeng, W.; Sun, J.; Zhang, D.; Ma, X.; Qian, P. The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters. Ocean Eng. 2021, 227, 108835. [Google Scholar] [CrossRef]
- Kamarlouei, M.; Gaspar, J.F.; Calvario, M.; Hallak, T.S.; Mendes, M.J.G.C.; Thiebaut, F.; Guedes Soares, C. Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform. Renew. Energy 2022, 188, 145–163. [Google Scholar] [CrossRef]
- Guo, B.; Wang, T.; Jin, S.; Duan, S.; Yang, K.; Zhao, Y. A Review of Point Absorber Wave Energy Converters. J. Mar. Sci. Eng. 2022, 10, 1534. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; Forehand, D. A review of geometry optimisation of wave energy converters. Renew. Sustain. Energy Rev. 2021, 139, 110593. [Google Scholar] [CrossRef]
- Aderinto, T.; Li, H. Review on Power Performance and Efficiency of Wave Energy Converters. Energies 2019, 12, 4329. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
Parameter | Size |
---|---|
Length (m) | 3.600 |
Wide (m) | 0.618 |
Beak radius (m) | 0.103 |
Spine radius (m) | 0.206 |
Draft (m) | 0.206 |
Mass (kg) | 331 |
Moment of inertia Ixx (kg·m2) | 356 |
Moment of inertia Iyy (kg·m2) | 11 |
Moment of inertia Izz (kg·m2) | 365 |
Mooring Line Serial | Fairlead Position | Anchor Position |
---|---|---|
1 | (0.0, 1.8, 0.0) | (3.5, 2.5, −3.7) |
2 | (0.0, 1.8, 0.0) | (−3.5, 2.5, −3.7) |
3 | (0.0, 1.8, 0.0) | (3.5, −2.5, −3.7) |
4 | (0.0, 1.8, 0.0) | (−3.5, −2.5, −3.7) |
Parameters | Without WEC | With WEC |
---|---|---|
Tp (s) | 7.783 | 7.788 |
Hs (m) | 3.882 | 1.173 |
Parameters | Value |
---|---|
Number of blades | 3 |
Rotor, hub diameter (m) | 126, 3 |
Hub height (m) | 90 |
Rotor mass-1 (kg) | 110,000 |
Nacelle mass-2 (kg) | 240,000 |
Tower mass-3 (kg) | 347,460 |
Coordinate Location of CM-1,2,3 (m) | (−0.2, 0, 64.0) |
Total draft of platform (m) | 20 |
Volume of displacement (m3) | 13,917 |
Platform mass (kg) | 1.3473 × 107 |
Coordinate location of CM of platform (m) | (0, 0, −13.46) |
Number of mooring lines | 3 |
Angle between adjacent lines (°) | 120 |
Depth to anchors/fairleads below SWL (m) | 200, 14 |
Radius to anchors/fairleads (m) | 837.6, 40.868 |
Unstretched mooring line length (m) | 835.5 |
Mooring line diameter (m) | 0.0766 |
Equivalent extensional stiffness (N/m) | 7.536 × 108 |
Equivalent mass density/in water (kg/m) | 113.35, 108.63 |
Total mass of the FOWT system (kg) | 1.417 × 107 |
Global CM location below SWL (m) | 9.6475 |
Total structure roll inertia about CM (kg·m2) | 1.1 × 1010 |
Total structure pitch inertia about CM (kg·m2) | 1.1 × 1010 |
Total structure yaw inertia about CM (kg·m2) | 1.226 × 1010 |
Parameters | FOWT Without WEC | FOWT with WEC | Relative Error |
---|---|---|---|
Pitch (°) | 0.8959 | 0.2165 | −75.834% |
Heave (m) | 0.3291 | 0.0965 | −70.678% |
Parameters | FOWT Without WEC | FOWT with WEC | Relative Error |
---|---|---|---|
Rotor azimuth angular speed | 0.023 | 0.004 | −82.625% |
Nacelle fore-aft translation | 0.997 | 0.275 | −72.388% |
Tower base fore-aft shear force | 0.874 | 0.157 | −81.991% |
Tower base axial force | −0.009 | −0.002 | −79.224% |
Tower base pitch moment | 0.970 | 0.228 | −76.540% |
Power generation | 0.098 | 0.020 | −79.773% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, T.; Dong, Y.; Guo, X.; Liu, S.; Jiang, Y.; Yuan, Z. Numerical and Experimental Investigation of a Ducky Wave Energy Converter and Its Impact on Floating Ocean Wind Turbines. J. Mar. Sci. Eng. 2025, 13, 1527. https://doi.org/10.3390/jmse13081527
Tao T, Dong Y, Guo X, Liu S, Jiang Y, Yuan Z. Numerical and Experimental Investigation of a Ducky Wave Energy Converter and Its Impact on Floating Ocean Wind Turbines. Journal of Marine Science and Engineering. 2025; 13(8):1527. https://doi.org/10.3390/jmse13081527
Chicago/Turabian StyleTao, Tao, Yu Dong, Xinran Guo, Shi Liu, Yichen Jiang, and Zhiming Yuan. 2025. "Numerical and Experimental Investigation of a Ducky Wave Energy Converter and Its Impact on Floating Ocean Wind Turbines" Journal of Marine Science and Engineering 13, no. 8: 1527. https://doi.org/10.3390/jmse13081527
APA StyleTao, T., Dong, Y., Guo, X., Liu, S., Jiang, Y., & Yuan, Z. (2025). Numerical and Experimental Investigation of a Ducky Wave Energy Converter and Its Impact on Floating Ocean Wind Turbines. Journal of Marine Science and Engineering, 13(8), 1527. https://doi.org/10.3390/jmse13081527