A Large Cenomanian Carbonate Ramp at the Transition Between Two Domains of the Zagros Sedimentary Basin, SW Iran: Cyclic Evolution and Its Eustatic and Tectonic Controls
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Carbonate Microfacies
4.2. Evidence from Foraminiferal Paleoecology
4.3. Depositional Environments and Cycles
5. Discussion
6. Conclusions
- (1)
- The established carbonate microfacies (often wackestones and packstones with a muddy matrix) and the patterns of foraminiferal paleoecology indicate the existence of the large carbonate ramp during the late Albian–Cenomanian;
- (2)
- According to the documented stratigraphic distribution of the carbonate microfacies, each of which correspond to a specific depositional environment, the carbonate ramp evolved cyclically, with three cycles with the maximum flooding surfaces corresponding to the K110, K120, and K130 surfaces of Arabia; the third cycle reflects an abrupt deepening episode in the second half of the Cenomanian;
- (3)
- The factors of the cyclic development of the carbonate ramp are unclear, but the influences of neither the global sea-level changes nor the regional tectonic activity can be excluded.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moriya, K. Earth’s sea surface environment in the late Mesozoic greenhouse interval. Fossils 2017, 102, 31–42. [Google Scholar]
- Chéreau, A.; Gruneisen, P.; Montenat, C.; Soudet, H.J. A dynamic model of a rudist carbonate platform the Middle Cenomanian of Oleron (France). Bull. Des Cent. De Rech. Elf Explor. Prod. 1997, 21, 1–29. [Google Scholar]
- Kiessling, W.; Flügel, E.; Golonka, J. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 2003, 36, 195–225. [Google Scholar] [CrossRef]
- Philip, J.; Negra, M.H.; Bachari, M. Upper Cenomanian caprinulid-radiolitid rudists (Bivalvia) from the Gattar Member of Jebel el Kebar (central Tunisia): Stratigraphical implications and palaeobiogeographical relationships with coeval rudist-assemblages from carbonate platforms of the southern Tethyan margin. Cretac. Res. 2024, 153, 105713. [Google Scholar]
- Golonka, J. Plate tectomic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–273. [Google Scholar] [CrossRef]
- Sharland, P.R.; Archer, R.; Casey, D.M.; Davies, R.; Hall, S.H.; Heward, A.P.; Horbury, A.D.; Simmons, M.D. Arabian Plate Sequence Stratigraphy; GeoArabia Special Publication: Manama, Bahrain, 2001; Volume 2, pp. 1–371. [Google Scholar]
- van Buchem, F.S.P.; Simmons, M.D.; Droste, H.J.; Davies, R.B. Late Aptian to Turonian stratigraphy of the eastern Arabian Plate—Depositional sequences and lithostratigraphic nomenclature. Pet. Geosci. 2011, 17, 211–222. [Google Scholar] [CrossRef]
- Navidtalab, A.; Mehrabi, H.; Shafaii Moghadam, H.; Rahimpour-Bonab, H. Strontium isotope proxy of sedimentological records reveals uplift and erosion in the Southeastern Neo-Tethys ocean during the late Cretaceous. Sci. Rep. 2024, 14, 3499. [Google Scholar] [CrossRef]
- Sun, G.; Hu, X.; Garzanti, E.; BouDagher-Fadel, M.K.; Xu, Y.; Jiang, J.; Wolfgring, E.; Wang, Y.; Jiang, S. Pre-Eocene Arabia-Eurasia collision: New constraints from the Zagros Mountains (Amiran Basin, Iran). Geology 2023, 51, 941–946. [Google Scholar] [CrossRef]
- Amirnezhad, S.; Mohebian, R.; Bahrodi, A.; Jahanbakhshi, S. Hydrocarbon potential evaluation in the Low Resistivity Pays (LRP) of Sarvak formation with combining Nuclear Magnetic Resonance (NMR) and seismic data, one of the hydrocarbon reservoirs in southwest of Iran. Int. J. Min. Geo-Eng. 2023, 57, 413–426. [Google Scholar]
- Hosseinpour, M.; Arian, M.; Maleki, Z.; Qorashi, M. Investigating for hydrocarbon potential in the Sarvak and Ilam Formations using Fuzzy logic in the Fars Region, Iran. Episodes 2023, 46, 361–374. [Google Scholar] [CrossRef]
- Sabouhi, M.; Kadkhodaie, A.; Hosseinzadeh, S.; Batezelli, A. Seismic sequence stratigraphy of Late Albian-Early Turonian successions in SW Iran: Implication for reservoir characterizations and potential for improved reservoir quality prediction. J. Afr. Earth Sci. 2024, 214, 105269. [Google Scholar] [CrossRef]
- Asadi Mehmandosti, E.; Adabi, M.H.; Woods, A.D. Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran. Sediment. Geol. 2013, 293, 9–20. [Google Scholar] [CrossRef]
- Assadi, A.; Honarmand, J.; Moallemi, S.-A.; Abdollahie-Fard, I. Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies 2016, 62, 26. [Google Scholar] [CrossRef]
- Hajikazemi, E.; Al-Aasm, I.S.; Coniglio, M. Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. Geol. Soc. Spec. Publ. 2010, 330, 253–272. [Google Scholar] [CrossRef]
- Mehdipour, V.; Rabbani, A.R.; Kadkhodaie, A. Quantitative Analysis of Diagenesis Control on the Spatial Heterogeneity of Sarvak Carbonate Formation, the Dezful Embayment of Zagros Basin, Western Iran. SPE J. 2024, 29, 3118–3130. [Google Scholar] [CrossRef]
- Mehrabi, H.; Fakhar-Shahreza, N.; Karami, F.; Honarmand, J. Controls of tectonics and paleoclimate on depositional–diagenetic evolution and pore types of Upper Cretaceous successions (Sarvak Formation) in the Abadan plain, Iran. Mar. Pet. Geol. 2024, 170, 107118. [Google Scholar] [CrossRef]
- Nabi, M.A.; Jahani, D.; Soleimani, B.; Jalilian, A.H. Facies analysis and diagenetic processes of the Albian-Turonian carbonates of the Sarvak formation in Gachsaran oil field, SW Iran. Carbonates Evaporites 2025, 40, 18. [Google Scholar] [CrossRef]
- Razin, P.; Taati, F.; van Buchem, F.S.P. Sequence stratigraphy of Cenomanian-Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: An outcrop reference model for the Arabian Plate. Geol. Soc. Spec. Publ. 2010, 329, 187–218. [Google Scholar] [CrossRef]
- Bordenave, M.L.; Hegre, J.A. Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geol. Soc. Spec. Publ. 2010, 330, 291–353. [Google Scholar] [CrossRef]
- Sepehr, M.; Cosgrove, J.W. Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fault-Thrust Belt. Tectonics 2005, 24, TC5005. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, G.; Li, Y.; Wen, Z.; Zhang, Q.; Zhao, Y. Structure-deformation features of the Zagros fold and thrust belt. Sci. Geol. Sin. 2015, 50, 653–664. [Google Scholar]
- GholamiZadeh, P.; Wan, B.; Garzanti, E.; Hu, X.; Esmaeili, R.; Ebrahimi, M. Collision Timing and Provenance Shifts from the Late Oligocene to Middle Miocene in the Southeasternmost Zagros Orogen. Sci. Rep. 2025, 15, 6023. [Google Scholar] [CrossRef]
- Tesauro, M.; Maierová, P.; Koptev, A.; Pastorutti, A.; Pivetta, T.; Koulakov, I.; Braitenberg, C. What controls structural variations along the Zagros Collision Zone? Insights from geophysical observations and thermo-mechanical modelling. Gondwana Res. 2024, 133, 297–322. [Google Scholar] [CrossRef]
- Jafari, A.; Ao, S.; Jamei, S.; Ghasemi, H. Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history. Earth-Sci. Rev. 2023, 241, 104419. [Google Scholar] [CrossRef]
- Navabpour, P.; Angelier, J.; Barrier, E. Mesozoic extensional brittle tectonics of the Arabian passive margin, inverted in the Zagros collision (Iran, interior Fars). Geol. Soc. Spec. Publ. 2010, 330, 65–96. [Google Scholar] [CrossRef]
- James, G.A.; Wynd, J.G. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bull. 1965, 49, 2182–2245. [Google Scholar]
- Alsharhan, A.S.; Nairn, A.E.M. Sedimentary Basins and Petroleum Geology of the Middle East; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Ziegler, M.A. Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and its Hydrocarbon Occurrences. GeoArabia 2001, 6, 445–504. [Google Scholar]
- Wynd, J.G. Biofacies of the Iranian Oil Consortium Agreement Area. Iranian Oil Operating Companies, Geological and Exploration Division, 1965; Report No. 1082. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wilson, J.L. Carbonate Facies in Geologic History; Springer: New York, NY, USA, 1975. [Google Scholar]
- BouDagher-Fadel, M.K. Evolution and Geological Significance of Larger Benthic Foraminifera; UCL Press: London, UK, 2018. [Google Scholar]
- Geel, T. Recognition of Stratigraphic Sequences in Carbonate Platform and Slope Deposits: Empirical Models Based on Microfacies Analysis of Paleogene Deposits in Southeastern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 155, 211–238. [Google Scholar] [CrossRef]
- Gholamizadeh, P.; Adabi, M.H.; Sadeghi, A. Microfacies, geochemistry and sequence stratigraphy of the Sarvak Formation (Mid Cretaceous) in the Kuh-e Siah and Kuh-e Mond, Fars area, southern Iran. J. Afr. Earth Sci. 2019, 160, 103634. [Google Scholar] [CrossRef]
- Schlagintweit, F.; Xu, T.; Zhang, S. Calcareous green algae (Dasycladales, Halimedaceae) from the Upper Cretaceous of the western Tarim Basin, NW China: Systematic palaeontology, microfacies, and palaeobiogeographic significance. Carnets Géologie 2025, 25, 89–108. [Google Scholar] [CrossRef]
- van Buchem, F.; Gaumet, F.; Vedrenne, V.; Vincent, B. Middle East Cretaceous Sequence Stratigraphy Study (Report). NIOC-IFP, 2006. [Google Scholar]
- Hart, M.B.; Bailey, H.W. The Recognition of Mid Cretaceous Sea-Level Changes by Means of Foraminifera. Cretac. Res. 1980, 1, 289–297. [Google Scholar] [CrossRef]
- Kalanat, B.; Vaziri-Moghaddam, H.; Bijani, S. Depositional history of the uppermost albian–turonian sarvak formation in the Izeh Zone (SW Iran). Int. J. Earth Sci. 2021, 110, 305–330. [Google Scholar] [CrossRef]
- Bassi, D.; Hottinger, L.; Nebelsick, H. Larger Foraminifera from the Upper Oligocene of the Venetian area, northeast Italy. Palaeontology 2007, 5, 845–868. [Google Scholar] [CrossRef]
- BouDagher-Fadel, M.K. Biostratigraphic and Geological Significance of Planktonic Foraminifera; UCL Press: London, UK, 2015. [Google Scholar]
- Septfontaine, M. Steps of morphogenesis and iterative evolution of imperforate larger foraminifera in shallow carbonate shelves during Mesozoic times: Possible relations to symbiotic and abiotic factors. In Morphogenesis, Environmental Stress and Reverse Evolution; Guex, J., Torday, J.S., Miller, W.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–173. [Google Scholar]
- Serra-Kiel, J.; Hottinger, L.; Caus, E.; Drobne, K.; Ferrandez, C.; Kumar Jauhri, A.; Less, G.; Pavlovec, R.; Pignatti, J.; Samso, J.M.; et al. Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bull. Société Géologique Fr. 1998, 169, 281–299. [Google Scholar]
- Sirel, E. Foraminiferal description and biostratigraphy of the Bartonian, Priabonian, and Oligocene shallow-water sediments of southern and eastern Turkey. Rev. Paléobiologie 2003, 22, 269–339. [Google Scholar]
- Bozkurt, A.; Görmüş, M.; Bozkurt, B.T. Middle Eocene Alveolina-dominated benthic foraminiferal assemblages of the western flank of the Isparta Angle (SW Türkiye): Taxonomy, biostratigraphy, microfacies analysis, and paleoenvironmental implications. Turk. J. Earth Sci. 2023, 32, 3. [Google Scholar] [CrossRef]
- Serra-Kiel, J.; Gallardo-Garcia, A.; Razin, P.; Robinet, J.; Roger, J.; Grelaud, C.; Leroy, S.; Robin, C. Middle Eocene-Early Miocene larger foraminifera from Dhofar (Oman) and Socotra Island (Yemen). Arab. J. Geosci. 2016, 9, 344. [Google Scholar] [CrossRef]
- Cruz-Abad, E.; Consorti, L.; Di Lucia, M.; Parente, M.; Caus, E. Fissumella motolae n. gen. n. sp., a new soritoidean (Foraminifera) from the lowermost Albian carbonate platform facies of central and southern Italy. Cretaceoous Res. 2017, 78, 1–7. [Google Scholar] [CrossRef]
- Schlagintweit, F. Agglutinated conical foraminifera (Orbitolinidae, Coskinolinidae) from the Upper Cretaceous (Campanian) of Greece, with description of Paracoskinolina klokovaensis n. sp. Acta Palaeontol. Rom. 2021, 17, 83–94. [Google Scholar] [CrossRef]
- Dias-Brito, D. Global stratigraphy, paleobiogeography and paleoecology of Albian-Maastrichtian phitonellid calcispheres: Impact to Tethys configuration. Cretac. Res. 2000, 21, 315–349. [Google Scholar] [CrossRef]
- Omana, L.; Torres, J.R.; Doncel, R.L.; Alencaster, G.; Caballero, I.L. A pithonellid bloom in the Cenomanian-Turonian boundary interval from Cerritos in the western Valles–San Luis Potosi platform, Mexico: Paleoenvironmental significance. Rev. Mex. de Cienc. Geol. 2014, 31, 28–44. [Google Scholar]
- Wilmsen, M. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac. Res. 2003, 24, 525–568. [Google Scholar] [CrossRef]
- Aguilera-Franco, N.; Hernández-Romano, U. Cenomanian-Turonian facies succession in the Guerrero-Morelos Basin, southern Mexico. Sediment. Geol. 2004, 170, 135–162. [Google Scholar] [CrossRef]
- Arthur, M.A.; Schlanger, S.O.; Jenkyns, H.C. The Cenomanian-Turonian Oceanic Anoxic Event II: Palaeoceanographic controls on organic-matter production and preservation. Geol. Soc. Lond. Spec. Publ. 1987, 26, 401–420. [Google Scholar] [CrossRef]
- Hart, M.B. A water-depth model for the evolution of the planktic Foraminiferida. Nature 1980, 286, 252–254. [Google Scholar] [CrossRef]
- Luciani, V.; Cobianchi, M. The Bonarelli level and other black shales in the Cenomanian-Turonian of the northeastern Dolomites (Italy): Calcareous nannofossil and foraminiferal data. Cretac. Res. 1999, 20, 135–167. [Google Scholar] [CrossRef]
- Madhavaraju, J.; Scott, R.W.; Sial, A.N.; Ramirez-Montoya, E. Chemo- and biostratigraphy of the Cretaceous Dalmiapuram Formation, Uttatur Group, Kallakudi II section, Cauvery Basin, South India. Arab. J. Geosci. 2021, 14, 1868. [Google Scholar] [CrossRef]
- Pomoni-Papaioannou, F.A.; Zambetakis-Lekkas, A. Facies associations of the late Cenomanian carbonate platform of Tripolitza subzone (Bitina, Central Peloponnesus, Greece): Evidence of long-term/terrestrial subaerial exposure. Boll. Della Soc. Geol. Ital. 2009, 128, 123–130. [Google Scholar]
- Navarro-Ramirez, J.P.; Bodin, S.; Heimhofer, U.; Immenhauser, A. Record of Albian to early Cenomanian environmental perturbation in the eastern sub-equatorial Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 423, 122–137. [Google Scholar] [CrossRef]
- Diedrich, C.; Caldwell, M.W.; Gingras, M. High-resolution stratigraphy and palaeoenvironments of the intertidal flats to lagoons of the Cenomanian (Upper Cretaceous) of Hvar island, Croatia, on the Adriatic carbonate platform. Carbonates Evaporites 2011, 26, 381–399. [Google Scholar] [CrossRef]
- López-Horgue, M.A.; Poyato-Ariza, F.J.; Cavin, L.; Bermúdez-Rochas, D.D. Cenomanian transgression in the Basque-Cantabrian Basin (northern Spain) and associated faunal replacement. J. Iber. Geol. 2014, 40, 489–506. [Google Scholar] [CrossRef]
- Rosales, I.; Schlagintweit, F. The uppermost Albian–lower Cenomanian Bielba Formation of the type-area (Cantabria, northern Spain): Facies, biostratigraphy, and benthic Foraminifera. Facies 2015, 61, 16. [Google Scholar] [CrossRef]
- Benyoucef, M.; Krajewski, M.; Guendouz, M.L.; Adaci, M.; Gumsley, A.; Piuz, A.; Zaoui, D.; Bouchemla, I.; Salamon, M. Southern Tethys shelf evolution around the Cenomanian–Turonian OAE2: The Saharan Atlas (Algeria) depositional model. J. Palaeogeogr. 2025, 14, 334–369. [Google Scholar] [CrossRef]
- Bougoffa, M.I.; Chellat, S.; Cherif, A.; Benkhedda, A. Microfacies and depositional environments from the new proposed Upper Cretaceous of Bourzal Formation (Ziban Mounts, Biskra, Eastern Saharan Atlas, Algeria). Carbonates Evaporites 2024, 39, 92. [Google Scholar] [CrossRef]
- Bachmann, M.; Kuss, J. The Middle Cretaceous carbonate ramp of the northern Sinai: Sequence stratigraphy and facies distribution. Geol. Soc. Spec. Publ. 1998, 149, 253–280. [Google Scholar] [CrossRef]
- Wanas, H.A. Cenomanian rocks in the Sinai Peninsula, Northeast Egypt: Facies analysis and sequence stratigraphy. J. Afr. Earth Sci. 2008, 52, 125–138. [Google Scholar] [CrossRef]
- Richardt, N. The Cenomanian in the Teutoburger Wald near Halle/Westphalia (NW Germany): An integrated stratigraphic-sedimentological, microfacies and geophysical analysis. Geol. Und Palaeontol. Westfal. 2010, 78, 5–60. [Google Scholar]
- Simmons, M.D.; Sharland, P.R.; Casey, D.M.; Davies, R.B.; Sutcliffe, O.E. Arabian Plate sequence stratigraphy: Potential implications for global chronostratigraphy. GeoArabia 2007, 12, 101–130. [Google Scholar] [CrossRef]
- Haq, B.U. Cretaceous eustasy revisited. Glob. Planet. Change 2014, 113, 44–58. [Google Scholar] [CrossRef]
- Piryaei, A.; Riejmer, J.J.G.; van Buchem, F.S.P.; Ysazdi-Moghadam, M.; Sadouni, J.; Danelian, T. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). Geol. Soc. Spec. Publ. 2010, 330, 211–251. [Google Scholar] [CrossRef]
- Esfandyari, M.; Mohseni, H.; Heidari, M. Facies analysis, depositional sequences and platform evolution of the Sarvak Formation (late Albian-Turonian) in the Zagros Basin, West of Iran. J. Afr. Earth Sci. 2023, 198, 104811. [Google Scholar] [CrossRef]
- Simmons, M.D.; Bidgood, M.D.; Davies, R.B.; Droste, H.; Levell, B.; Razin, P.; van Buchem, F.S.P. Intra-Turonian stratigraphic reorganization on the Arabian Plate. Geol. Soc. Spec. Publ. 2025, 545, 431–497. [Google Scholar] [CrossRef]
- Flament, N.; Gurnis, M.; Müller, R.D. A review of observations and models of dynamic topography. Lithosphere 2013, 5, 189–210. [Google Scholar] [CrossRef]
- Gurnis, M. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature 1993, 364, 589–593. [Google Scholar] [CrossRef]
- Husson, L.; Conrad, C.P. Tectonic velocities, dynamic topography, and relative sea level. Geophys. Res. Lett. 2006, 33, L18303. [Google Scholar] [CrossRef]
- Lithgow-Bertelloni, C.; Silver, P.G. Dynamic topography, plate driving forces and the African superswell. Nature 1998, 395, 269–272. [Google Scholar] [CrossRef]
- Liu, L. The ups and downs of North America: Evaluating the role of mantle dynamic topography since the Mesozoic. Rev. Geophys. 2015, 53, 1022–1049. [Google Scholar] [CrossRef]
- Rubey, M.; Brune, S.; Heine, C.; Davies, D.R.; Williams, S.E.; Müller, R.D. Global patterns in Earth’s dynamic topography since the Jurassic: The role of subducted slabs. Solid Earth 2017, 8, 899–919. [Google Scholar] [CrossRef]
- Matthews, K.J.; Seton, M.; Müller, R.D. A global-scale plate reorganization event at 105–100 Ma. Earth Planet. Sci. Lett. 2012, 355–356, 283–298. [Google Scholar] [CrossRef]
- Navidtalab, A.; Sarfi, M.; Enayati-Bidgoli, A.; Yazdi-Moghadam, M. Syn-depositional continental rifting of the Southeastern Neo-Tethys margin during the Albian–Cenomanian: Evidence from stratigraphic correlation. Int. Geol. Rev. 2020, 62, 1698–1723. [Google Scholar] [CrossRef]
- Czarnota, K.; Hoggard, M.J.; White, N.; Winterbourne, J. Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochem. Geophys. Geosyst. 2013, 14, 634–658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi-Doreh, F.; Habibi, T.; Ruban, D.A.; Hosseinzadeh, R. A Large Cenomanian Carbonate Ramp at the Transition Between Two Domains of the Zagros Sedimentary Basin, SW Iran: Cyclic Evolution and Its Eustatic and Tectonic Controls. J. Mar. Sci. Eng. 2025, 13, 1084. https://doi.org/10.3390/jmse13061084
Moradi-Doreh F, Habibi T, Ruban DA, Hosseinzadeh R. A Large Cenomanian Carbonate Ramp at the Transition Between Two Domains of the Zagros Sedimentary Basin, SW Iran: Cyclic Evolution and Its Eustatic and Tectonic Controls. Journal of Marine Science and Engineering. 2025; 13(6):1084. https://doi.org/10.3390/jmse13061084
Chicago/Turabian StyleMoradi-Doreh, Fatemeh, Tahereh Habibi, Dmitry A. Ruban, and Rohollah Hosseinzadeh. 2025. "A Large Cenomanian Carbonate Ramp at the Transition Between Two Domains of the Zagros Sedimentary Basin, SW Iran: Cyclic Evolution and Its Eustatic and Tectonic Controls" Journal of Marine Science and Engineering 13, no. 6: 1084. https://doi.org/10.3390/jmse13061084
APA StyleMoradi-Doreh, F., Habibi, T., Ruban, D. A., & Hosseinzadeh, R. (2025). A Large Cenomanian Carbonate Ramp at the Transition Between Two Domains of the Zagros Sedimentary Basin, SW Iran: Cyclic Evolution and Its Eustatic and Tectonic Controls. Journal of Marine Science and Engineering, 13(6), 1084. https://doi.org/10.3390/jmse13061084