Impact of Climate Change on the Hydrodynamics of the Ria de Arousa (NW Spain)
Abstract
1. Introduction
2. Materials and Methods
2.1. Delft3D Numerical Model Implementation
2.1.1. Grid and Bathymetry
2.1.2. Reference Implementation and Validation
2.1.3. Climate Scenarios
- i.
- Open ocean boundary.
- ii.
- Atmospheric open boundary.
- iii.
- Fluvial open boundaries.
- iv.
- Parameters and specifications.
2.2. Data Analysis
3. Results
3.1. Thermohaline Properties
3.1.1. Summer’s Spring Tide
3.1.2. Winter’s Spring Tide
3.2. Residual Circulation
3.2.1. Summer
3.2.2. Winter
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Des, M.; Gómez-Gesteira, M.; deCastro, M.; Gómez-Gesteira, L.; Sousa, M.C. How can ocean warming at the NW Iberian Peninsula affect mussel aquaculture? Sci. Total Environ. 2020, 709, 136117. [Google Scholar] [CrossRef] [PubMed]
- Vaz, L.; Sousa, M.C.; Gómez-Gesteira, M.; Dias, J.M. A habitat suitability model for aquaculture site selection: Ria de Aveiro and Rias Baixas. Sci. Total Environ. 2021, 801, 149687. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Sousa, M.C.; Bernardes, C.; Dias, J.M. Will Climate Change Endangers the Current Mussel Production in the Rias Baixas. J. Aquac. Fish. 2017, 1, 1. [Google Scholar] [CrossRef]
- Sousa, M. Modelling the Minho River Plume Intrusion into the Rias Baixas. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2013. [Google Scholar]
- Rosón, G.; Pérez, F.F.; Alvarez-Salgado, X.A.; Figueiras, F.G. Variation of both thermohaline and chemical properties in an estuarine upwelling ecosystem: Ria de arousa: I. Time evolution. Estuar. Coast. Shelf Sci. 1995, 41, 195–213. [Google Scholar] [CrossRef]
- Río-Barja, F.; Rodríguez-Lestegás, F. As Augas de Galicia; Consello de Cultura: Santiago de Compostela, Spain, 1992. [Google Scholar]
- Alvarez, I.; deCastro, M.; Gomez-Gesteira, M.; Prego, R. Inter- and intra-annual analysis of the salinity and temperature evolution in the Galician Rías Baixas-ocean boundary (northwest Spain). J. Geophys. Res. Oceans 2005, 110, C04008. [Google Scholar] [CrossRef]
- Barton, E.D.; Largier, J.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo. Prog. Oceanogr. 2015, 134, 173–189. [Google Scholar] [CrossRef]
- Otto, L. Oceanography of the Ria de Arosa (NW Spain); University of Leiden: Leiden, The Netherlands, 1975; 210p. [Google Scholar]
- Des, M.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, J.L.; Sousa, M.C.; Gómez-Gesteira, M. Modeling salinity drop in estuarine areas under extreme precipitation events within a context of climate change: Effect on bivalve mortality in Galician Rías Baixas. Sci. Total Environ. 2021, 790, 148147. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.; Sippel, S.; Fischer, E.; Smith, C.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, 9549–9567. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Baptistelli, S.C. Hydrodynamic Modeling: Application of Delft3D-FLOW in Santos Bay, São Paulo State, Brazil. In Recent Progress in Desalination, Environmental and Marine Outfall Systems; Springer International Publishing: Cham, Switzerland, 2015; pp. 307–332. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Lagrangian transport of particles in Ria de Aveiro lagoon, Portugal. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2001, 26, 721–727. [Google Scholar] [CrossRef]
- Elias, E.P.L.; Walstra, D.J.R.; Roelvink, J.A.; Stive, M.J.F.; Klein, M.D. Hydrodynamic Validation of Delft3D with Field Measurements at Egmond. In Coastal Engineering 2000; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 2714–2727. [Google Scholar] [CrossRef]
- Mendes, J.; Ruela, R.; Picado, A.; Pinheiro, J.P.; Ribeiro, A.S.; Pereira, H.; Dias, J.M. Modeling Dynamic Processes of Mondego Estuary and Óbidos Lagoon Using Delft3D. J. Mar. Sci. Eng. 2021, 9, 91. [Google Scholar] [CrossRef]
- Tu, L.X.; Thanh, V.Q.; Reyns, J.; Van, S.P.; Anh, D.T.; Dang, T.D.; Roelvink, D. Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Cont. Shelf Res. 2019, 186, 64–76. [Google Scholar] [CrossRef]
- Des, M.; deCastro, M.; Sousa, M.C.; Dias, J.M.; Gómez-Gesteira, M. Hydrodynamics of river plume intrusion into an adjacent estuary: The Minho River and Ria de Vigo. J. Mar. Syst. 2019, 189, 87–97. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R. Seasonality of the circulation in the Ría de Muros (NW Spain). J. Mar. Syst. 2009, 78, 94–108. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renew. Energy 2009, 34, 1517–1524. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R.; Castro, A. Baroclinic modelling and analysis of tide- and wind-induced circulation in the Ría de Muros (NW Spain). J. Mar. Syst. 2008, 74, 475–484. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Residual circulation in the Ría de Muros (NW Spain): A 3D numerical model study. J. Mar. Syst. 2009, 75, 116–130. [Google Scholar] [CrossRef]
- Sousa, M.C.; Vaz, N.; Alvarez, I.; Gomez-Gesteira, M.; Dias, J.M. Modeling the Minho River plume intrusion into the Rias Baixas (NW Iberian Peninsula). Cont. Shelf Res. 2014, 85, 30–41. [Google Scholar] [CrossRef]
- Alvarez, I.; deCastro, M.; Gomez-Gesteira, M.; Prego, R. Hydrographic behavior of the Galician Rias Baixas (NW Spain) under the spring intrusion of the Miño River. J. Mar. Syst. 2006, 60, 144–152. [Google Scholar] [CrossRef]
- Liu, H.; Song, Z.; Wang, X.; Misra, V. An ocean perspective on CMIP6 climate model evaluations. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2022, 201, 105120. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Pan, Y.; Tan, Z.; Abraham, J.; Zhang, B.; Zhu, J.; Song, J. How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity? Adv. Atmos. Sci. 2022, 39, 1650–1672. [Google Scholar] [CrossRef]
- Pereira, H.; Picado, A.; Sousa, M.C.; Alvarez, I.; Dias, J.M. Evaluation of Earth System Models outputs over the continental Portuguese coast: A historical comparison between CMIP5 and CMIP6. Ocean Model. 2023, 184, 102207. [Google Scholar] [CrossRef]
- Laurent, A.; Fennel, K.; Kuhn, A. An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean. Biogeosciences 2021, 18, 1803–1822. [Google Scholar] [CrossRef]
- Andres-Martin, M.; Azorin-Molina, C.; Shen, C.; Fernández-Alvarez, J.C.; Gimeno, L.; Vicente-Serrano, S.M.; Zha, J. Uncertainty in surface wind speed projections over the Iberian Peninsula: CMIP6 GCMs versus a WRF-RCM. Ann. N. Y. Acad. Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zha, J.; Li, Z.; Azorin-Molina, C.; Deng, K.; Minola, L.; Chen, D. Evaluation of global terrestrial near-surface wind speed simulated by CMIP6 models and their future projections. Ann. N. Y. Acad. Sci. 2022, 1518, 249–263. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Hundecha, Y.; Arheimer, B.; Donnelly, C.; Pechlivanidis, I. A regional parameter estimation scheme for a pan-European multi-basin model. J. Hydrol. Reg. Stud. 2016, 6, 90–111. [Google Scholar] [CrossRef]
- “Europe Climate Change—HypeWeb”. [Online]. Available online: https://hypeweb.smhi.se/explore-water/climate-change-data/europe-climate-change/ (accessed on 10 September 2023).
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; deCastro, M.; Dias, J.M. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total Environ. 2020, 703, 134808. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Chapter 3—Physical Properties of Seawater. In Descriptive Physical Oceanography, 6th ed.; Talley, L.D., Pickard, G.L., Emery, W.J., Swift, J.H., Eds.; Academic Press: Boston, MA, USA, 2011; pp. 29–65. [Google Scholar] [CrossRef]
- Pond, S.; Pickard, G. Introductory Dynamical Oceanography; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar] [CrossRef]
- Burchard, H.; Hetland, R.D. Quantifying the Contributions of Tidal Straining and Gravitational Circulation to Residual Circulation in Periodically Stratified Tidal Estuaries. J. Phys. Oceanogr. 2010, 40, 1243–1262. [Google Scholar] [CrossRef]
- Piedracoba, S.; Álvarez-Salgado, X.A.; Rosón, G.; Herrera, J.L. Short-timescale thermohaline variability and residual circulation in the central segment of the coastal upwelling system of the Ría de Vigo (northwest Spain) during four contrasting periods. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Taboada, J.J.; Prego, R.; Ruiz-Villarreal, M.; Gómez-Gesteira, M.; Montero, P.; Santos, A.; Pérez-Villar, V. Evaluation of the Seasonal Variations in the Residual Circulation in the Ría of Vigo (NW Spain) by Means of a 3D Baroclinic Model. Estuar. Coast. Shelf Sci. 1998, 47, 661–670. [Google Scholar] [CrossRef]
- Álvarez, I.; deCastro, M.; Prego, R.; Gómez-Gesteira, M. Hydrographic characterization of a winter-upwelling event in the Ria of Pontevedra (NW Spain). Estuar. Coast. Shelf Sci. 2003, 56, 869–876. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; deCastro, M.; Prego, R.; Pérez-Villar, V. An Unusual Two Layered Tidal Circulation Induced by Stratification and Wind in the Ría of Pontevedra (NW Spain). Estuar. Coast. Shelf Sci. 2001, 52, 555–563. [Google Scholar] [CrossRef]
- Prego, R.; Fraga, F. A Simple Model to Calculate the Residual Flows in a Spanish Ria. Hydrographic Consequences in the ria of Vigo. Estuar. Coast. Shelf Sci. 1992, 34, 603–615. [Google Scholar] [CrossRef]
- Anestis, A.; Lazou, A.; Pörtner, H.O.; Michaelidis, B. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 293, R911–R921. [Google Scholar] [CrossRef]
- Van Erkom Schurink, C.; Griffiths, C.L. Physiological energetics of four South African mussel species in relation to body size, ration and temperature. Comp. Biochem. Physiol. A Physiol. 1992, 101, 779–789. [Google Scholar] [CrossRef]
- Ferreira, J.; Magalhães, A. Cultivo de mexilhoes. In Aquicultura: Experiencias Brasileiras; Poli, C.R.P., Poli, A.T.B., Andreatta, E.R., Beltrame, E., Eds.; Universidade Federal de Santa Catarina: Florianopolis, Brazil, 2004. [Google Scholar]
Parameter | Specification |
---|---|
Time step | 0.5 min |
Run period | Historical Period Winter: 1 November 2010–1 March 2011 Summer: 1 May 2011–1 September 2011 SSP5-8.5 Future Scenario Winter: 1 November 2089–1 February 2090 Summer: 1 May 2090–1 August 2090 |
Spin-up period | 1 month |
Interval | 60 min |
Number of σ-layers | 26 |
Bottom roughness | Manning coefficient Uniform: U = 0.024 V = 0.024 |
Background horizontal eddy viscosity and diffusivity | 10 m2/s |
Background vertical eddy viscosity and diffusivity | 10−5 m2/s |
Turbulence closure | k − ε |
Heat flux model | Absolute flux, net solar radiation |
Wind | Uniform |
River discharges | Douro, Lima, Minho, Oitavén-Verdugo, Lerez, Umia, Ulla, and Tambre |
Threshold depth | 0.1 m |
Variable | Present (Mean ± IC95%) | Future (Mean ± IC95%) | Δ (Future–Present) |
---|---|---|---|
Temperature (°C) | 18.00 ± 0.05 | 19.93 ± 0.05 | −0.00015 |
Salinity (ppt) | 34.97 ± 0.03 | 34.69 ± 0.04 | 0.00651 |
Density (kg/m3) | 1025.24 ± 0.03 | 1024.53 ± 0.04 | 0.00545 |
Brunt–Väisälä frequency (cycles/h) | 75.30 ± 0.83 | 72.02 ± 0.79 | −0.04264 |
Variable | Present (Mean ± IC95%) | Future (Mean ± IC95%) | Δ (Future–Present) |
---|---|---|---|
Temperature (°C) | 12.13 ± 0.03 | 13.08 ± 0.03 | −0.00714 |
Salinity (ppt) | 30.89 ± 0.25 | 31.08 ± 0.27 | 0.02658 |
Density (kg/m3) | 1023.35 ± 0.19 | 1023.33 ± 0.21 | 0.02050 |
Brunt–Väisälä frequency (cycles/h) | 78.50 ± 1.34 | 71.86 ± 1.28 | −0.06253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, C.; Sousa, M.C.; Pereira, H.; Ribeiro, A.; Alvarez, I.; Dias, J.M. Impact of Climate Change on the Hydrodynamics of the Ria de Arousa (NW Spain). J. Mar. Sci. Eng. 2025, 13, 1063. https://doi.org/10.3390/jmse13061063
Ribeiro C, Sousa MC, Pereira H, Ribeiro A, Alvarez I, Dias JM. Impact of Climate Change on the Hydrodynamics of the Ria de Arousa (NW Spain). Journal of Marine Science and Engineering. 2025; 13(6):1063. https://doi.org/10.3390/jmse13061063
Chicago/Turabian StyleRibeiro, Clara, Magda C. Sousa, Humberto Pereira, Américo Ribeiro, Ines Alvarez, and João M. Dias. 2025. "Impact of Climate Change on the Hydrodynamics of the Ria de Arousa (NW Spain)" Journal of Marine Science and Engineering 13, no. 6: 1063. https://doi.org/10.3390/jmse13061063
APA StyleRibeiro, C., Sousa, M. C., Pereira, H., Ribeiro, A., Alvarez, I., & Dias, J. M. (2025). Impact of Climate Change on the Hydrodynamics of the Ria de Arousa (NW Spain). Journal of Marine Science and Engineering, 13(6), 1063. https://doi.org/10.3390/jmse13061063